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Abstract'

Monolithically structured robot controls can only
be adapted and enbanced with high -efforts.
Therefore we develop a configuration system and a
graphical user interface in order to configure the
robot control on the fly. Within the envisaged
scenario the operator is able to configure the
motion control according to the mechanical
structure of a robot by just pushing of “a button”.
For the flexible configuration of robot control
systems knowledge-based approaches are pursued.
The motion control of a simulated robot is
produced by the simple combination of
components. In particular we automatically
configure the forward and backward kinematics on
the basis of a declarative description of a robot,
which among other things indicates the number of
joints. The main goal of our project is the
development of a generalized software architecture
that applies to all classes of robots.

1. Introduction

Motion control is one of the main research areas in
robotics. The development of motion control software for
serial robots has traditionally been a longsome process
that was generally a custom approach for each robot type.
A central problem is the determination of the inverse
kinematics of serial manipulators with arbitrary
geometry. It has been shown that the joints of such a
general 6-degree-of-freedom manipulator can orient
themselves in up to 16 different configurations for a
given position and orientation of the tool centre point [1,
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2]. However numerical solutions like the Newton-
Raphson technique to the inverse kinematics which can
be used for arbitrary geometries cannot find all these
solutions. In contrary geometric and algebraic methods
can find all these solutions, but they cannot be applied to
all robot geometries, especially they cannot be applied to
hyper redundant manipulators with an infinite number of
solutions. As a result, most industrial manipulators are
designed so that a closed form solution exists. To
simplify the development of motion control software
most industrial robots have only revolute or prismatic
joints and orthogonal, parallel and/or intersecting joint
axes (instead of skew arranged joint axes) and often three
consecutive axes intersect in a common point. However
the development of motion control software is still an
individual programming effort for a particular robot
employing computational tools, e.g. MatLAB™ with
little or no integration possibilities.

In the next section we review related work and the
current state of the art in detail. Section 3 describes our
research project about automatic configuration of robot
control software. An example of how to automatically
generate the motion control of a 4-degree-of-freedom
robot will be given at the end of the paper.

2. Related Work

A proprietary and not universal control system is difficult
to modify and makes it hard to integrate new hard- and
software components. Therefore robotics research today
focuses on devcloping systems that exhibit modularity,
flexibility and intelligence. A major issue in the field is
software reuse. Robot software is inherently coupled to
the mechanical structure and to the underlying hardware
making it difficult to adapt and to reuse the software. As
a consequence there were a series of initiatives started in
order to produce a functional basis for robot control
systems. '

OROCOS (Open Robot Control Software / Open
Realtime Control Services) [3] is a European open source
software project coordinated by Universiteit Leuven,
Belgium. The project is based on design patterns as well
as on object-oriented programming methods. OROCOS
has a highly modularized structure, where it is easy to
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connect and to replace moduies in order to master the
software complexity problem.

OSCAR  (Operational  Software Components for
Advanced Robotics) [4. 5] is a project of the Robotics
Research Group at University of Texas, Austin. The
OSCAR framework is based on an object-oriented
design. Components developed in OSCAR are thus
reusable and applicable across different robot types.
OSCAR also offers functionalities to deal with redundant
and fault tolerant advanced robots. The OSCAR
framework has been developed and used for several
vears, and counts NASA and the Department of Energy
(DOE) amongst its users.

ROBOOP (A robotics object oriented package in C++)
[6] is a library for robotics synthesis and simulation
developed at the Ecole Polytechnique de Montreal. The
robot classes include a class to compute the forward
kinematic model using a recursion relation and a class to
compute the inverse kinematic model using a Newton-
Raphson technique. The project is under the terms of the
GNU LGPL and a source code distribution can be
downloaded. JROBOOP is an open Java package
inspired by ROBOOP and developed by the Robotics and
Automation Group of the University of Naples.

The Matlab Robotics Toolbox [7, 8] was developed at the
CSIRO ICT Centre Australia by P. Corke and provides
the kinematics and dynamics models for well known
robots such as the Unimate Puma 560 and the Stanford
arm. The toolbox cannot derive symbolically the closed-
form solution of the inverse kinematics in case that the
analytical model of the robot exists. Instead it calculates
an iterative numerical solution which can be slow and
provides only limited control over the particular solution
that will be found.

Robotica [9] is a Mathematica package developed at the
University of Illinois at Urbana-Champaign. Its input is a
text file containing the Denavit-Hartenberg parameters
and dynamics data describing the robot to be analyzed.
Robotica generates the forward kinematics, the Jacobian
matrix and the complete Lagrangian dynamic model but
there are no functions for trajectory planning or inverse
kinematics. Results can be generated in a purely
symbolic form and thus Robotica requires Mathematica.
But because the project is no longer supported or updated
it will not be compatible with future Mathematica
versions.

3. Organic Robot Control

Within a subproject of the priority programme 1183
“Organic Computing” of the German Research
Foundation (DFG) a software architecture for a robot
controller is developed with emphasis on self-
configuration and self-organization features. In particular
a configuration system and a graphical user interface are
developed in order to configure the robot control on the
fly. In general, a serial robot consists of a number of rigid
links connected with joints. The operator specifies the

mechanical structure of a particular robot and then let the
configurator automatically generates the motion control.
This self-configuration is based on domain knowledge
and on rules. The configurator opens up numerous
selection and combination possibilities:

e Kinematic structure of the first three joints, e.g.
SCARA, cartesian, cylindrical, spherical or
articulated robot.

e  Number of joints (n = 4...6), each joint can be
rotatory or prismatic. Four and five degrees-of-
freedom robots are usually equipped with symmetric
tool pieces.

e  Two joints can be parallel or at right angle in the
zero position of the robot. When two joints are
arranged at right angle then they can intersect or
cannot intersect. When two joints are arranged
parallel then there can be some space between them
or they can coincide.

e Geometric dimensions, arm lengths and workspace.

s Interpolation clock, velocity profile and interpolation
algorithms that should be supported, e.g. point-to-
point, linear, circular and spline.

Besides the automatic generation of motion control
software the user can integrate his own software
components ever a specified APIL.

3.1. Denavit-Hartenberg Convention

We require a systematic manner for modeling the rabot’s
geometry. We use the Denavit-Hartenberg (DH)
convention proposed in 1955 [10], because it is the most
compact general representation of the robot’s geometry.
A minimum number of parameters describe the link
geometry. At first the joint axes are identified and each
joint is assigned a coordinate frame according to the
following rules.

e Ifthe joint axis i+1 is revolute, the z axis is directed
along the axis of rotation as followed by the right
hand rule.

e If the joint axis i+] is prismatic, the z axis is
directed along the linear motion.

We define frame 0 as the base frame and begin an
iterative process in which we define frame i using frame
i—1, beginning with frame 1. In order to determine the x;
axis and the origin of frame i we distinguish four cases:

1. The axes z_,, z are arranged at right angle and
intersect: The origin of the i" coordinate frame is
located at the intersection of joint z; and z;., axis. The
x; axis is directed along the common normal. The
positive direction of x; is arbitrary.

2. The axes z-, z are arranged at right angle and de not
intersect: The origin of the i™ coordinate frame is
located at the intersection of joint z axis and the
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common normal between joint axis z; and z;.,. The x;
axis is directed along the common normal.

LS

. The axes z_,, z are parallel: The x; axis points along
the common perpendicular from the z, to the z; axis.
The origin of frame i can be chosen anywhere on z
and is set to the point where the x; axis that passes
through the origin of the i-1" frame intersects the z
axes.

4. The axes 7z, z are coinciding: The x; axis can be
chosen arbitrary and is set to the x;, axis and the
origin of the i frame is set to the origin of the i-1"
frame.

When the axes z., and z; skew it is necessary to assign
the frames by hand, but this case is very seldom. The y;
axis is chosen to create a right-handed coordinate system,
i.e. the y; axis is simply the cross product of the z; and x;
axes.

In order to describe the relative location of frame i with
respect to the previous frame i-1 the four DH-parameters
(8, di, a,, o) are associated with each joint pair.

1. The joint angle 6, is the angle between the x;., and x;
axes about the z_, axis.

(R

. The link offset d, is the distance between the x;.; and
x, axes along the z., axis and respectively the
perpendicular distance between x;,; and x; axes.

3. The link length a; is the distance between the z_, and
7, axes along the x; axis and respectively the
perpendicular distance between z;., and z; axes.

4. The link twist g is the angle from the z;., axis to the z;
axis about the x; axis.

There is no rotation or translation about the y;.; or y; axis.
In order to automatically determine the DH parameters
we brought following expert knowledge into rule form:

o Ifthe i" joint is rotatory, then 6; is a variable, not a
parameter.

e Ifthe i joint is prismatic, then d; is a variable, not a
parameter.

s The parameters g
parameters.

and o; are always fixed

o Ifthe i" joint is prismatic and the axes x; and x;., are
parallel then the parameter 6; is equal 0° (8;=180°
when the axes are anti-parallel).

s If the i™ joint is rotatory and the axes x; and x,
intersect then the parameter d; is equal 0.

e Ifthe axes z and z., intersect then the parameter a; is
equal 0.

s If the axes 7z; and 7z, are parallel then the parameter
a; is equal 0° (o; =180° when the axes are anti-
parallel).

After setting up a coordinate frame for every joint of the
robot we can automatically compute the DH-parameters
which cannot be concluded with the above rules. Once
we do this, we establish a set of matrices that transform
one coordinate frame to the next one.

For two frames positioned in space, the first can be
moved into coincidence with the second by a sequence of
one rotation, two translations and one rotation. Thus,
each homogenous transformation matrix from one
coordinate frame to the next frame is represented as a
product of four basic transformations.

T,

i-li

= Roi(z,_,,8)*Trans(z,_,,d,)*

Trans(x;,a;)* Rot(x,, ;).

3.2. Forward Kinematics

For serial manipulators, the forward kinematics is
straightforward to derive. We formulate the forward
kinematics using four-by-four homogeneous
transformation matrices. The matrix Tgy describing the
position and orientation of the end-effector relative to the
base is calculated as the product of the N intermediate
transformations matrices T ;; from joint i-1 to joint i
where N is the number of joints of the robot:

N
=T * _
I;J.N -'70,1 *T;.E g T:.:—I,n ‘1_[|T1"-1,i (2)
s
In this context, the joint variables are given, and then the
position and orientation of the end-effector is

automatically computed. There always exists a unique
solution.

3.3. Inverse Kinematics

The motion control requires the solution of the inverse
kinematics, which computes the joints variables given the
position and orientation of the end-effector. This problem
is much more difficult than the forward kinematics
problem, because a set of nonlinear equations has to be
solved. We use the same equations as for the forward
kinematics, but now the TCP frame is specified and the
joint coordinates are unknown. The equations are tightly
coupled with multiple unknowns and with many
trigonometric functions. A closed form solution can not
always be derived. When dealing with general
manipulators the equations can become very large and
difficult to solve requiring advanced symbolic
transformation techniques.

We are much more interested in finding a closed form
solution of the inverse kinematics rather than a numerical
solution. There are two major reasons why closed form
solutions are preferable. At first, they can be much faster
calculated than iterative numerical ones. This s
especially important when real-time constraints have to
be satisfied. Iterative solutions require a lot of
computations and are also more prone to numerical errors
which can occur than analytical solutions. At second,
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robots with many rotatory joints may have several
solutions for one given Cartesian position and
arientation. These solutions often exhibit various forms
of symmetry. Having multiple solutions allows us to
choose a particular solution among them.

It is also possible that there exists no solution for the
inverse kinematics, because any robot only has a finite
reach. When the desired TCP location is out of the
workspace the inverse kinematics has no solution.
Therefore each obtained solution is checked whether it
satisties all constraints regarding the ranges of possible
joint motions. Solutions that violate the joint limits are
discarded. Of the remaining valid solutions, usually the
one closest to the current manipulator configuration is
chosen.

There does not exist always a closed form solution for
the inverse kinematics. In his 1968 Ph.D. thesis [11], D.
L. Pieper enumerated special cases in which a closed
form solution is feasible. These cases include any serial
manipulator with six revolute joints when three
consecutive joints intersect or when three consecutive
joints are parallel. In particular Pieper’s solution applies
to robots with spherical wrist, where the solution can be
found by decoupling the Cartesian position and
orientation. Tourassis [12] also identified some special
cases of manipulator design where a decoupling of the
robot geometry is guaranteed and thus the inverse
kinematics can be solved in closed form.

We use the algorithm of Paul [13] for determining a
closed kinematics solution. Thereby the equations of the
forward kinematics are arranged in many different ways
in order to isolate unknown joint variables. Although
there are only 12 equations and up to 6 unknown joint
variables, they can be rewritten in many different ways.
Each side of the direct kinematics equations is pre- and
postmultiplied by the inverse of the transformation

matrices T.;7'=Tii,. For a 4-degree-of-freedom
manipulator we generate the following equation set.
LT, * 0%, = To4
Ty * T, * 1o = Toa* Ty 5
L,*T* T, 10" Ty,
T, * Tl,z = I;a,q * T:H * Tsj
Ti,z * 23 = Tm ¥ 1;),4 ¥ T4 .
L;*T, = L,* T, Ty, v
TU_I = TGA ¥ T4,:~ * ng ¥ Tz,l
1y, = T,*T,* 7,5 *Taz
T, = 0L, *T,* To ¥ T,
T3_,4 = I,* T, - T ¥ 'y

These are of course redundant transformations of the
same set of equations. The generated number of
equations is quite large: 12*n*(n+1)/2, where n is the

number of transformation matrices. However, many
equations do not contribute to a solution to the inverse
kinematics problem. Since the Denavit-Hartenberg-
Convention tends to isolate the joint variables we can
also get some equations with fewer unknowns. In the
case of parallel revolute joints we use the sums of the
joint angles as intermediate variables in order to simplify
the equations. Thereby we make use of the trigonometric
addition theorems. The equations are asserted into the
working memory of our rule-based system. These
equations are difficult to solve, although there may be
only a single variable in an equation. However this
variable may appear in several different trigonometric
functions like sine and cosine.

To overcome this problem we use a pattern based
transformation technique and a knowledge base about
mathematical solutions. If an equation is matched with a
pattern in the knowledge base then the corresponding
transformation is done. In particular the solutions for a
series of elementary trigonometric equations are directly
generated. For example Wolovich [14] determined the
unique solution for the following two equations in one
unknown 8 given the known terms a, b, c and d

a*cosf@ —b*sind =c
a*sinf+b*cosl=d 4)
=>@=arctan,(a*d -b*c,a*c+b*d)

Note that a*+b’=c’+d’. When both arguments of the
arctangent function are zero, 6 is not defined and the
manipulator is in a singular configuration. Paul [15]
computed further solutions for various trigonometric
equations which we also included in our knowledge base.

3.4. Symbolic Singularity Analysis

A singularity can occur at points where two different
inverse kinematic solutions converge, when joint axes
become aligned or parallel, or when the boundaries of the
workspace are reached. The determination and the
avoidance of singularities are another major issue in the
motion control of robot manipulators, because at a
singularity, the mobility of a manipulator is reduced. The
arbitrary motion of the manipulator in a Cartesian
direction is usually lost.

The Jacobian matrix is obtained by differentiating the
equations of the forward transformation. In singular
configurations the Jacobian matrix of a manipulator is
singular. Therefore we determine and analyze the
Jacobian matrix and in particular the cases when the
determinant is zero. All values of joint variables which
result in zero or near zero determinants are at singular
configurations. However, it is difficult to identify
singular configurations for general manipulators. As the
manipulator complexity increases, the complexity of the
Jacobian matrix determinant also increases.
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4. Example Configuration

In this section we configure the motion control of a Scara
(Selectively Compliant Assembly Robot Arm) step by
step. The Scara is one of the simplest kinematics and is
mainly used for “pick-and-place” operations. Since the
robot has to push things into other things, the robot must
be stiff in the vertical direction.

The RRT-design (Revolute-Revolute-Translational) has
two parallel vertical revolute joints; the third one is an
anti-parallel prismatic joint for moving the end-effector
normal to the plane and the fourth one is a vertical
revolute joint for orienting the end-effector. Therefore 8,
8, d; and 8, are the variable joint parameters and the
other DH-parameters are the constant ones. Since the
first and second joint axes are parallel, a; is zero. The
parameter a, is equal 180° since the second and third
joint axes are anti-parallel. The third and fourth joint axes
are also parallel. In this case o is zero. The parameter a
is the length of the perpendicular between the first and
second joint axes and g, is the length of the perpendicular
between the second and third one. Since the third and
fourth axes coincide a; is zero. The end-effector frame is
chosen to be coincident with frame 3 when 8, is zero.
Therefore dy, a; and o, are zero. The complete DH-
parameters based on the robot geometry are indicated in
following table.

Table 1. DH-parameters of RRT-Scara

Jointi |  6i di ai ai
1 01 dl al 0°
2 02 0 a2 180°
3 0° d3 0 0°
4 04 0 0 0°

At next the transformation matrices are symbolically
derived from the DH-table. The forward kinematics
equations are computed by multiplying the
transformation matrices together.

n, = cos(6, + 6, -6,)

n,= sin(6, + 6, - 6,)

n,= 0

o, = sin(6, + 6, - 6,)

0,= —~cos(6, +6,-6,)

0,= 0

g 0 (%)
a,= 0

a,= —]

p.= a *cos(f)+a,*cos(6, +6,)
p,= a*sin(6)+a,* sin(é, + 6,)
p,= d,—d,

In these equations we represent the orientation of the
TCP as an orthonormal rotation matrix containing 9
elements. In general, the position and orientation of the
TCP frame is given as

nx O.\' ax px
H (7] [#)
L=l 2 7 7 Py (6)
nz Oz a: pz
0 0 0 1

The complexity of solving the inverse kinematics
increases with the number of nonzero DH-parameters.
However, the equations in this example are simple
enough to solve directly in closed form. Especially the
position and orientation variables are decoupled and only
five of these 12 equations contribute to the solution.
First, we look for solvable equations like those having a
single unknown variable. In the last equation p, is only
dependent on the known variable d, and the unknown
variable ds, so we can directly solve for d;. Equations for
px and p, are used to determine 0, and 6. The solution is
extracted by pattern matching with our knowledge base.
The same is done with the equations for n, and n, in
order to determine 8, + 0, - 85. Hence, we get a solution
for 04 depending on 6, and 0,.

arctan (
8= p,*(ay*cos0y +a))—p,*(ay *sinB,),
Py *(ay *cosBy + @)~ p), *(ay *sinhy))
2
2 2 2 2
+ 0 Py tPy —ay —4
a 2aya AR
0, = arctan, wa
2 2 2 2
Py tpy, —a —a
2:]']612 J
d3 = dl — Pg
04 = B) + 6, —arctan, (n,,n,)

According to these equations there are up (o two
solutions of the inverse kinematics for a desired position
and orientation of the end-effector when ignoring joint
limits and the presence of obstacles. These two solutions
are referred as elbow-up and elbow-down configurations.

By creating the Jacobian matrix and setting 1its
determinant equal zero, we determine singularities in the
robot workspace

det(J) = a, * a, *sin(d,)

8
det(J) =0 <> 6, = 0°+ k*180° )
Therefore, singular configurations occur when the arm is
fully extended or fully contracted. Then it is not possible
to move radially either towards or away from the origin
in Cartesian space. We have a restricted motion in the
plane.
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in Cartesian space. We have a restricted motion in the
plane.

5. Conclusion and Future Work

In this paper we have presented the structure of a
configurator for general serial manipulators. The
configurator was developed with the goals of flexibility
and efficiency in mind in order to reduce the time to
generate customized motion control software. In
particular the configurator eliminates the effort of
producing the cumbersome kinematic equations manually
for each robot type. In the near future we will also
implement numerical methods to find a solution to the
inverse kinematics problem if a closed form solution
does not exist. Furthermore we will also enhance the
motion control system with functionalities for trajectory
generation in Cartesian and in joint space.
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