Development of the Adaptive System for Moving Control
of the Mobile Robot Based on the Pioneer-2 AT

E.V. Chepin
Department of Computer Systems &
Technologies
Moscow Engineering and Physics Institute
(State University)
Moscow, Russia
e-mail: chepin@dozen.mephi.ru

Abstract’
This paper describes a kind 6f the hybrid approach
to create a system which controls automatic
movement of a mobile robot in the building. Not
only practical parts of that, but mainly theoretical
factors which concerns the problem are described
here. This paper gives explanation for the five
problems encountered during the development of
robot’s automatic movement control system (MCS):

« simple neural net training and it’s constraints;
e route-based analysis of landscape;

» dynamic localization correction;

o hardware acceleration for MCS;

o ways for the evolution of current approach;

This paper may come useful not only for moblie
robots’ constructors, but also for those who is
interested in combining neural algorithms with
classical mathematical methods.

1. Introduction

Primarily this project was started for designing the
moving control system for mobile robot that could drive
inside a building. We examined some common
approaches to this problem and have taken out results
suitable for current situation. Visually problem looks
something like Fig.1.

Main difference to most popular systems is that our MCS
does not generating any raster map for calculations of the

' Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the CSIT copyright notice and the title of the
publication and its date appeat. and notice is given that copying is by
permission of the Institute for Contemporary Education JMSUICE. To
copy otherwise. or o republish, requires a fee and/or special
permission from the JMSUICE.

Proceedings of the 8" International Workshop on

Computer Science and Information Technologies
CSIT’2006
Karlsruhe, Germany, 2006

D.A. Parkhomenko
Department of Computer Systems &
Technologies
Moscow Engineering and Physics Institute
(State University)

Moscow, Russia
e-mail: buchanen@mail.ru

robot’s path. It doesn’t mean that it should not be anyway
for any other purposes, but it is just excluded from the
rout computating. General advantage of such decision is
in great flexibility and discharging of on-board
computer’s resources as it will be described further.

= '7| Automatic
_ moving

Sonars
covering
zone

Rangefinder

Figure 1. Mobile Robot and it’s Target

Our research has also affected many ways to the
optimization of solving problem. As a part of the plan for
optimization we’d built and tested a hardware
accelerator. It hasn’t entirely satisfied our hopes, but it
could be helpful for more detailed view of the problem.
The developed software MCS is itself a training system
that consists of the simple perceptron neuron net which
potential is preatly increased by route-directed
subsystem. This subsystem works with locality of given
paths. Locality means an array of one’s representative
and distinctive points with some measured values that
somehow defines the nearby land for each of them.
Firstly these paths are given by the robot opcrator. As it
will be described later the localization correcting
mechanism is based on this route representation.

All software in this project (except HDL part) were
written in Borland® C-++ Builder. All schematics were
built in Xilinx ™ IDE.

2. Suggested System’s Structure Overview

There was developed a kind of an environment
simulation software ESS. It is used for MCS testing and

Development of the Adaptive System for Moving Control of the Mobile Robot based on the Pioneer-2 AT

56

debugging. Every screenshot that will be given below (if
the source was not explicitly mentioned) is based on that
software. Most of experiments were done using idea of

fig. 2.

There is user interface with display where ESS shows
robot model in the land model. In the real mode operator
could use two web cameras attached to the robot to see
where the robot is. These cams are parts of separated

system which will not be described here.

Robot has WiFi extension card so the operator will
contact with system by WiFi channel. The only data that
ransfers between on-board system and operator’s
computer is mode selection (training/testing system to
find given target), robot direct control (when in training

mode) and System parameters.

modeselection:

testing

Moving Control
System +
Robot Model

directcontrol

Parameters
visualization

Enviromen(}

visualization

Enviroment J
- S USSR

Figure 2. Simplified Experiments’ Diagram

[0
| |
{ MCS
Route {
mermory | fSECf?fS' Getting
A | indexing rext
ystem " matrix point
ARt .
Calculating - 1
. points' S Y
rﬂnd;esgllacl|un. rameters e
raining/ - =
testsing B i) % noBOpOT [ycKopesay
searching 2| recalculat
representative A route! | Normalize/
points choosing
== ;
direct_robot_contral :\\ the input)
) B
‘] © 6 |o
Enviroment properties Sonars o @ %
Enviroment - : 3
Coordinales' change Moving mechanism]
Robot J

Figure 3. Structure of Suggested System

MCS Block

Comments

Normalize/choosin
g the input

Used for sending signals to
motors from direct user control

or necural net according to
current mode
Neural net See 3.
Searching repr. | Finds points that are
points outstanding in terms of robot

SENSOrs

Calculating points’
arameters

Storing parameters from sensors
for route memory

Route memory

Saves the representative points’
information

Sectors’
matrix

indexing

Generating matrix for optimal
way lookup

Creating new route

Links representative points

Getting next point

Finding new (usually)
target for NN.

local

And so, the suggested hybrid system’s structure in the
context of such experiments looks like Fig. 3.

It is a complex composition of simple modules. We will
show their work step by step. These modules will be just
declared here.

3. Classical Neural Algorithm

Here will be described idea and testing results of the
MCS based only on one neuron net. This stage is
necessary for evaluation of the system’s potential limits
which is driven only by one block. It seems to be helpful
for building a hybrid system. Because we can add
superblocks which could solve more complicated
problems than just going around nearby obstacles.

Problem is to make a net that could drive robot to the
given target and not to crush.

3.1. Environment for Testing Classical
Neural Algorithm

As it were mentioned above, at this time robot’s main
control unit is the double layered neuron net (perceptron

Workshop on Computer Science and Information Technologies CSIT 2006, Karlsruhe, Germany, 2006

37

net). It has sigmoid clipping function (1) in the first jayer
and threshold function (2) at the second. Such
configuration is the most popular one.

1 1
g ety (1
/=) 1—exp(—kx) 2
- xl]la\ ? X g _xma.\
f(x) = {l=_xmax <X < Xppae (2)
xmax?x 2 xmax

Inputs of the first layer are the following:

| # E Name | Range Comments
1|V -2..2 1| Speed of robot
218 0. +w Distance to the target
| t
3 | tg(a) | -e0..+oe | Tangent « at the fig. 4 (the
T angle between speed and
vector to the target)
4| ci ..240 | Value acquired from i sonar.

—+

(0 indicates that it is no
obstacles within sonar’s
covering. 240 indicates
collision). Full description of
the sonars model will be

| | given later

.
1 Actually weighting factors makes absolute values of the
input signals unimportant.

1 Sigmoid clipping function (1) easily normalizes these
infinities. It produces --1/2 for -co and +1/2 for +oo.

Target
h &

Sonars

Figure 4. Mobile Robot and Neural Net Input
Parameters

Sonars itself in our case are the devices for obstacle
detection. They detect nearby objects in a small solid
angle. Detection means that they provides a closeness
value of the nearest object. There are 7 sonars in the
model because it is difficult to make a model of sonar's
measure error, but decreasing their number in comparison
to that of robot we will reduce output measurement
accuracy of whole array and solve this problem for ESS.
It could bc said that sonars are covering whole circle
around the robot; this fact was depicted in the model we

built. Absolute value of effective sonar’s covering
distance in model were chosen equal to 80 pix (about 25
cm for real one).

Let’s get back to the neural net signals. Outputs of the net
are connected to the virtual joystick of robot base. So it
has two coordinates: bearing and accelcration.

i # | Name and range | Comments
1 | dCx: [-0.5 Value of bearing change
0.5]
12 | dCy: [-0.5 Acceleration of robot
| los

Let’s get back to the neural net signals. Outputs of the net
are connected to the virtual joystick of robot base. It has
two coordinates: so called bearing and acceleration. It is
not obvious if this simple net could successfully drive the
robot through a tangled route or even simply guard
against collisions, but it really cans (of course with some
limitations).

3.2. Net Structure

You could see whole net structure at figure 5. It is a
simple perceptron neuron net. It has 30 neurons in hidden
layer. Reasons for choosing such number will be
described in 4.

Sigmoid functions are used in hidden layer for
normalizing each of 30 components of the multiplication
result between input vector and matrix of the first layer.
Second matrix has two rows to result out virtual
joystick’s coordinates.

tg(alfa) \% \ Sonars 1

..... | } | } _{}_

Firstlayermatrix{(w[1..10][1])] Neuronet

{ Secondlayemamx‘w bearing..acceleration]i})

Threasholdfunctions I 7H

Sigmoid functions for

neurons'output

“Buueaq
T eooe

Figure 5. Neural Net Structure

3.3. Mouse Runs

Since the ESS was built it required some testing to see if
it works. For this purpose we’ve manually inited synaptic
weights of the neural net so it could drive the robot
model

Development of the Adaptive System for Moving Control of the Mobile Robot Based on the Pioneer-2 AT

58

away from the obstacle™ Mouse has been representing the
only obstacle in this experiment.

Thereby we saw the robot running from the mouse. For
more demonstrative way to show it in a static picture it
has been leaving traces (fig. 6). So the approximate
%enmb:hty of the model was adjusted.

imm

% am e

Figure 6. Performing Senars® Model Testing

3.4. Genetic Algorithm for the Net Training

We suggested that GA is the most progressive way to
solve our problem. There are many borders on the map.
At this step they are represented by small circles (sonars
could not know if the border has cutting edges).
Touching a circle or crossing own path stops the robot
(crossing in this program could be observed by the traces
that robot leaves on the map). Route loop detection is
important only for the training phase to create the most
progressive neural net configuration. Effectiveness of the
net initialization estimates (after the test’s been passed)
as the distance from stop point to the target.

We used simple (gaploid) Genetic Algorithm, because
it's configuring net before the MCS runtime and in our
case it is no need to run it for dynamical adjustment after
the reasonable configuration once was reached.

You may see diagram of designed process on fig. §. The
genom operations are represented at fig. 7 (a-c).

At first step we are creating a set of DNA’s (vectors with
fixed length) filled with random values — it is gene pool
of our population. Then for every generation of this
population we perform four operations: constructing® a
neuren net by the DNA image for every robot, testing
these newly constructed robot’s models (one by one),
calculating an error-function for every robot by it's

* A trammel presence inside the covering zone of one
sonar in this problem automatic means that robot should
drive directly backward from it. Superposition of such
needs is a new vector for robot’s virtual joystick.

¥ Constructing method does not really mean much for the
algorithm. The only constraints are that the construction
could be done in two ways (each DNA corresponds to the
only net and each net corresponds to the only DNA) and
that the DNA components should have same limits (from
Oto 1 in our case).

distance to a target, reverting to treir DNA’s and building
new population with model of “natural selection™ based
on their error-functions.

a. Crossover

[Choosing crossover point at random |

First parent DNA

Selcond parent DNA

Result DNA <>
Pl b

b. Mutatuion

[Randomly chosen poini of mutation

| Random\y
/generatedvaiue

DNA
Ly

C. Reversing

|[Random paints of reversing |

First garent DNA l l
Resuilt DNA

Figure 7. Main Operations for the Used Genetic
Algorithm

Creating N random
~ DNAs

TN

GENERATION y {Building

HEEH@E%EEH%%:&S:HS |
%%%? Yot

."M;}

V| 2% .
Building models from J robavi_s_
their DNAs mm?—%.m s vozew [Calc: ‘L
2 E :——:_,_Lg e-funcs |
|
Error-funcion values L T for {
{ for each robot |each |

Modeisi

that are

(&§Qlt—, closer lo}
optim unj:
Lessaojustedl i
persons removaiﬁ‘

{Creating| }~

new

| DNAs e

& person

—_—
| REGENERATION

Figure 8. Used Genetic Algorithm

Let’s repose on the breeding case operations depicted on
Fig. 7. Crossover means that each parent gives to the
Result a part of their own DNA. First parent gives first
and the second gives second. The separation point is
chosen randomly every time. Mutation means that one
component of the Result vector is changed to a random
value. Reversing means that random part of the Result
DNA turns around.

GA Setup

We build the GA-modeling program for current project,
se we have no need to setup the algorithm to carry out

Workshop on Computer Science and Information Technologies CSIT'2006, Karlsruhe, Germany, 2006

59

results for big set of possible applications. In this case
some constants were corrected in comparison with their
recommended values:

¢ Number of persons in the population: 200
e Number of “best” persons of every generation: 10
¢ Potential degeneration limit: 20000 generations

¢ Chance of mutation (fig. 7, b) and reversing (7, ¢),
crossover (7, a): 30%, 50%°

e Chance of crossover (fig. 7, a): 70%°

Practically algorithm drives to acceptable neural net
initializations at about 400-600" generation. As it was
mentioned above nets has 30 neurons in the hidden layer.
We supposed that this number overcomes minimum
needs of the optimal configuration. But in case of our
“accelerated” GA this number looks normal because it
brings bigger reserve of possibilities for faster evolution.

GA Results

To improve training process we were changing
“landscape” every gencration. So models had to find a
new path to the target every time. (The start and the end
point itselfes didn’t move.) At the following screenshots
start points are at the right bottom and the targets are at
the upper left corners. The ftraining has been done
successful. You may see the training progress at figures 9
and 10. There are shown the tracks which leave models
during their tests. At the a-picture there are only few
models which could get to the target (some of them does
it occasionaly). At the second picture number of well
studied persons increased. There are thick traces to the
target and only a few badly configured models which
drives somewhere else. We suggested that the training is
done when the most adjusted persons gets to the target
every time and in almost every landscape.

Figure 9. Population Tracks at First Generations

Result of this part of the project is that the neural net
could be configured to find even a complicated way to
the target. But sometimes when the path is very rough
{with U-turns for example) model could end up with a

* Increased for faster results

* Decreased in due of retarding interpenetration of the
genetic chaos.

kind of a dead-end. These results mean that neural MCS
has problems with paths which has many turningpoints
(i.e. extremums) but it is not sensible to that if the
landscape is not stable. Second feature is good for the
navigation in buildings where people may block the way
or move furniture. But the first feature is not.

Figure 10. Population Tracks Some Generations
Later

4. Creating New Algorithms for Automatic
Robot Moving

Suggested system tried to overcome neural net limits. It
have a system for finding and storing representative
waypoints that could become local targets that splits
difficult path. The problem of localization errors were
also comprised by this resaerch.

4.1. Algorithm for Route Construction

We believe that the most adequate way to represent
problem in common terms is to say that the neural MCS
could freely drive inside the rooms and straight corridors
(maybe with furniture and people). We call such places a
sectors. The designing system should find a way based
on the given by the teacher map of sectors. In suggested
MCS this map is a route-based and it contains
representative waypoints. Such waypoints could be set
manually, but normaly they are placed by a special
algorithm (it will be described further) to define a sector
and sectors’ joints. Every point has a list of it's
neighbours and id of it’s sector.

After all, we have a hybrid approach that works with
neural nets at basic driving level and with route
managing at the operators level,

Suggested MCS has two matrixes for calculating an
optimal route. An indexing matrix contains references of
the sectors’ joint points in a corresponding rows and
columns (these numbers equals to id’s of sectors).

Second matrix contains something like a connection
graph which allows to find scctor sequence between the
start and final target. It was called an adjacency matrix.
Flowchart of the indexing process (building indexing
matrix) is shown at the figure 11. Adjacency matrix
building process is depicted at fig. 12 (a, b). For explicity

Development of the Adaptive System for Moving Control of the Mobile Robot Based on the Pioneer-2 AT

60

we will describe the process in a few words in addition to
the image.

In this example teacher drives four sectors. These sectors
has representative points from 1 to 23. 4 is the last point
of the first sector, 5 is the first for the second and so on.
You can see order of indexing matrix filling at fig. 12, a.
(it is built as the flowchart 11 says). Grayed cells of the

matrix aren’t used. At last, the 23rd point is the last for 4%
1

sector but then the teacher drives back to 10" point (fig.
12, b). In this case matrix does not expand but the values

of the newly achieved point are written to the 4" row and
the 2™ column of it.

Consequently if the robot is in i sector and the target is
in the j™ it should move to the point referenced in j"
column and i row.

2 3

.|
|

k4
A= [1], N = 1(Size of mtrix A)
CS = 1 (current sector number)
P’ = p (Previous point equals start point)

:

!
c | Robot moves to next waypoint (p) i
T
new
o — . point -
NO YES
Y
NS = # of current W= Dl NS = N,
SEEAG _ for eachi
E _ AliJ[N] = A[iJ[CS].
A[NS]ICS] =p o
ACSINS] = 5 | | AINIT =P,
L AICS][N] = p’
R
F p'=p; CS=NS;
G

Figure 11. Indexing

5. Localization Correction

Loaclization correction is needed to compensate errors
emerged between real and internal co-ordinates[6]. These
errors could propagate and cause failures of MCS. Firstly
we've analyzed the degree-of-freedom of the route and
robot positioning alteration caused by localization errors
land transformation and other factors. It lineary grows
with the number of representative points. Thus MCS
needs dynamic error correction to split the process
between local sectors before error grows high. There are
two most popular solutions for this problem — GPS and
radars with beacons or a dispatcher. In our case we
implemented a simple mathematic algorithm partly based
on [5].

5.1. Indicative Fields

Problem was narrowed to correction of model co-
ordinates to real. We do not detect causes of errors. We
struggle only the fact. Actually we use two indicative
fields to calculate the compensation of angular and linear
errors. Main parameters of suggested algorihm are
depicted at figure 13.

For the linear component indicative vector fields (VIF)
calculates. Which is an extrapolation of points® vectors

that are calculated from the neural net “joystick” output
(the v vectors at the fig. 13),.

The second algorithm was consists in allocation of the
sectors’ “mass centres” and calculating the rotation of
VIF with “gravitation” to this mass centre of the sector.
This rotation field is the second indicative vector field
(RIF). We are finding maximum and minimum of that
field for each sector. Thereby there are three indicative
points: maximum, minimum and mass centre for cach
sector to derive the field’s profile linear distortions.

Pt St R

P a
!

Figure 13. Data that is Used for Localization
Correction for Each Representative Point

Workshop on Computer Science and Information Technologies CSIT°2006, Karlsruhe, Germany, 2006

61

a) z) @

Figure 12. Indexing Example

Let’s fix on the formulas. Let m(t) be a normalized vector
of robot’s speed and v(t) be the VIF in every route point.
Then the RIF will be:

R(t) = |v|lm|sin(ep), (3)
where the ¢ is the angle between v and j.

Evidently |v(t)| has no principle information of the route
characteristics, but rather of the movement features. So
the current procedure uses normalized v.

5.2. Calculation an Error Correction

Let’s view the localiztion error in the checkpoints. This
error is an (Ax;Ay) offset and it’s rotation by Aa of the
model system of axes to the real one.

Procedure of the localization correction by the given
route’s points is depicted at the figure 14. The given
points always belongs to the “teacher’s” path. It mean
that we consider that the land is stable when the teacher
is driving the robot and amount of propagated errors
caused by positioning inaccuracy is small that time.

RIF of representative point in case of standard and new
point are respectively:
F=vsing

#)

r=v'sing’

Let’s try the situation when the |v| is close to |v'| (this
also means that Aa is small: Ao = o(@)). (Note that if v is
equal to v' @' is equal to p-Aa). In this case we have:

r'=v'sin{p - Aa)

= (sin(e) —cos(p)ha) ©)
A = YSin(e) =1
cos(g)

Thus if we know ¢ of the representative point of the
teacher’s route then we can find Aa, the angular error. (It

is important that Aa may differ from zero even when no
angular error is present unlike linear one.)

We the value of Av for every point new route. It’s
physical meaning is directional differential for course of
m(t). So there is no way to safely predict the change of v
outside of route where the robot dislocates. We can find
errors only when the robot is on the known route. Based
on this evident assumption we consider that corrcction
Ax and Ay should be adjusted strictly along the route.
Forward if the sign((v'-v)(v'-v0")) < 0 and backward if
sign((v'-v)(v'-v0")) > 0. If the expression is zero there is
no error.

Ax = sign((V'—=v)(v'—v, Y cos(a'+x)Av 6)

Ay = sign((v'—-v)(v'—v, ")) sin(a +1)Av 1)
There were o in (6) and (7) but it can be also o of the
teacher’s route, because an angular error conducts great
contradictions only with big distances. « and o has same
effect with these Ax and Ay.

Thus we have localization correction vector (Ax; Ay) and
direction correction Aa.

But it is very important to mark that this algorithm of
localization correction works only with small errors
which are preferably propagated. This fact concerned
with that normaliy the VIF is just slightly stormed on the
teacher’s route (because it lays normally far from the
obstacles). So it has a small number of representative
points.

This method would work better if the teacher’s route
were layed necar the obstacles. Howerver this variant is
not rational but it illustrates the practical intent of the
theory: we can find out our real location if we will go
near the familiar landscape elements.

Mentioned problem is one of the minuses of the
algorithm. Second main minus is that system can not
fight against great dislocation that happened suddenly.

Development of the Adaptive System for Moving Control of the Mobile Robot Based on the Pioneer-2 AT

62

Y & 5 %% ; Wil

Newincorrectroute y ,:,p(t) 't
3 ;)y

/|| Representativ ¢

. ' - points
- i /! J
8 Ay
b Vit = W‘W
Y Dy :
E i = bl AR /
v it / . Fog
"__7 :9((} i ’
m _“Teachers'. o f i
oo
Ly

Ax

Figure 14. “Teacher's” Route and it’s Representation
in the Model Axis with an Error

5.3. Labels

Suggested MCS’s calculations are based on landscape
invariants. The next step for the system evolution is to
create an additional patential by the ability of land-
invariance recognition. Suggested term for the invariant
land information is label. Generality of this information
1s given us by VIF and RIF that are derived from robot
sensors” data. To create a real invariant of land in terms
of robot route we should know some history of it’s
moving. Instant shot of data from robot sensors is not
enough to fully describe invariant. This problem will be
discussed here later.

We need some history-specific methods to find out more
representative information. These methods also should
have ability to be dynamicly reconstructed and to work in
the real-time. We’ve chosen spiking (pulsed) neural nets
as the working theory to solve this problem. We’ve done
a little research in two concepts. They resulted with
nothing about labelling vet, but the work is going on.
Actually we are testing neo-cortex neural nets trying to
decode response as if it were a hash-function of invariant
route information. You can contact us by e-mail if you
are interested in results.

6. Hardware Acceleration

Main advantage of the hardware acceleration in this case
is that we could computate complicated problems with
some parallel methods. As far as the MCS is a realtime
system we suggested that it is justified to use some kind
of a spiking neural nets. We’ve tried to build a hardware
accelerator for MCS based on the CPLD evaluation board
we has. This board has Xilinx VirtexE 300 FPGA, some
static memory and the flash. It also has two serial
interfaces which were used to connect to computer,

6.1. Simple Spiking Neural Nets

Even in the most common spiking nets implementation
differs much from “classic™ perceptron nets. They usually

have links between every pair of neurons. There are
many types of spiking neural nets (SNN) but for the first
implementation we’ve chosen a simple structure. Spiking
nets has an advantage for the hardware acceleration in
case of implementation in CPLD (where the great amount
of operation concurency could be reached).

SNN deals with “charges™ (or “pulses”) which represent
processed data. Input and output data (in our case) is
measured by on-duty factor of input and output neurons.
The speed of pulse distribution inside net is limited.
Neurons accumulate incoming pulses, generate output
pulses corresponding to internal charge and discharges
slowly. Our first SNN topology is given at the Fig. 15.
Each neuron of this net has w (svnaptic weight vector)
and d (latency vector for each of it’s neighbours). Net has
it’s model time “t” and the raster diagram of it’s neurons
pulses Qext (firstly filled by zeroes).

The amount of jth neuron charge change is defined as
dQ/dt = Zwi-Qext[t-di, i] when it’s completely
discharged (Q = 0) and when it has some charge it is
dQ/dt = -k+ EZwi-Qext[t-di, i], where k means neuron
slow discharge. When the neuron charge exceeds it’s
limit neuron starts to chatter with pulses. Every it’s pulse
imprints “1” in Qext[t, j].

Input 2

Q Distribution latency

B

Synaptic weights
Figure 15. Used SNN Topology

6.2. Functional MCS Diagram with an
Accelerator

The diagram for MCS testing with Accelerator is
represented at fig. 16. It doesn’t differ much from fig, 3.
Main difference is that there is a tranceiver vice the
neuron net on the fig. 3. Tranceiver is connected to
onboard computer serial interface and transferes 10 bit
data between accelerator and computer. We used CORE
Generator to build the interface on the accelerator side.

Workshop on Computer Science and Information Technologies CSIT 2006, Karlsruhe, Germany, 2006

63

—

6.3. Results for the First SNN Configuration

First SNN has a delay line matrix 4x4 with 4 fully
interconnected neurons to simulate pulse distribution
latency properly. All constants are generated by special
schematic symbols. The research indicates that used
configuration is not capable enough to replace software
neural net.

We haven’t stop there and started to develop another
concept for SNN found in the article “Spike-timing
Dynamics of Neuronal Groups™ [1] and attended works
of E. Izhkevich [2-3]. Also we’ve used matherial from
some topical books like [4].

<ﬁ>{ MCS
o
Route s 2 " Net |
mem : !% g| |Next point hiet
Indexing S Sl | laction config
matrix 2 file INIT

-~

% —
=]
o

tg(a

earch for repr
points

Jirec!_moving control

el Tranceiver|, Accal |
a1
E ‘bearing accel
o
w Hopuarssaiwn’
| ssfoparosar
e i o
ol
! 1 SPEED, 1 | ¥

Pioneer 2-AT

Accelerator

Figure 16. Used SNN Topology

So we have ended up with a variety of very interesting
results but none of them could help us to improve the
MCS yet.

7. Present Results

We’ve designed an Adaptive Moving Control System for
the mobile robot we have. It is not implemented
completely yet, but it’s passed main tests. The hybrid
approach justified itself in terms of work simplification.
Since it is used the problem could be separated in a few
subproblems that lives only inside their “tessituras”. For
example: there is no need to complicate methods that
deals with “high level” waypoints if the local problems
could be solved by another method. It is much simplier to
separate methods® work hierarchical. And this article tries
to demonstrate how.

Acknowledgments

This investigation is partially supported by the following
grant: Ne 06-07-89146-a of Russian Foundation for Basic
Research (RFBR).

References

1. Izhikevich E.M., Gaily J.A., Edelman G.M. “Spike-
timing Dynamics of Neuronal Groups” The
Neurosciences Institute, San Diego, CA, USA.

2. Izhikevich E.M. “Simple model of spiking neurons™.
IEEE Trans Neural Networks, 2003; 14.

3. Izhikevich E.M., Desai N.S. “Relating STDP to
BCM”. Neural Computers, 2003.

4. Braitenberg V., Schuz A. “Anatomy of the cortex:
statistics and geometry”. Springer Verlag, Berlin,
Germany, 1991.

5. “Robust Monte Carlo Localization for
Robots”. Artificial Intelligence, 2001,

Mobile

6. Borenstein J., Everett B., and Feng L. “Navigating
Mobile Robots: Systems and Techniques”.
A K. Peters Ltd., Wellesley, MA, 1996.

Development of the Adaptive System for Moving Control of the Mobile Robot Based on the Pioneer-2 AT

64

