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Abstract

The intensional approach to development of a
computational model for relational languages is
applied. The feature of this approach is to give a
unified theoretical ground for dynamic computa-
tions — taking into account the ‘stages of knowl-
edge’. The model covered in this paper estab-
lishes the purely functional and applicative com-
putational environment.

1. Introduction

The version of relational calculus in this paper is based on
a ‘computational models’, and more rigorously — on the
applicative computational model [¥]. Thus derived calcu-
lus is referred as C-calculus, or calculus by E.F. Codd [1],
[2], [3]. Besides that for the needs of conceptual modeling
and design of databases the more general intensional cal-
culus is considered which is referred as R-calculus. This
intensional calculus is rather close to the languages for
frames []. This closeness is discussed in more details.

The way a relational calculus (C-calculus) was intro-
duced by E.F. Codd, this was a non-procedural query lan-
guage of a high level, based on a predicate calculus with
the restriction for proper interpretations of its expressions
by the finite relations.

In this paper, at first, C-calculus is accommodated for
using aggregate functions. Range formulae are separated
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from alpha-definable formulae. Then, the class of terms,
which basically includes constants and variables (by at-
tributes) is extended to the ‘applications’ of aggregate func-
tions to alpha-expressions. The range terms are determined
in a rather special way to fit with C-algebra.

2. Computational Model for Relational Calcu-
lus (C-calculus)

The syntax of the expressions is as follows.

1) Letfix the countable set Vr,. of variables vy, vo, ... with

type 7 for any 7.
2) Set of terms T'm is as follows.

(i) Individual constants for domains V;
cel| JVi(k)
T

are the terms where:

k — isthe assignment, k € Asg;

T — s the aftribute (type symbol).
Note that more rigorous writing would be ¢,
with the explicit type 7, or, equivalently, ¢ : 7.
Nevertheless whenever this is clear the type in-
dications will be omitted.

(ii) individual variables v, are terms of type 7 for any
T

The definition of term should be extended the this will
be done later.

3) The set of formulae is determined step by step. The set
of alphas is determined by induction.

(i) If B € (R;....,Rn), where (R.,...,Rn)

is scheme, then R, is atomic alpha of degree

deg(R;).
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(i) Quantified prefixes are the expressions as (Juvi)
or (¥v!) where variables v?, v7 are bound.

(iii) The set of closed alphas is determined by
ay(vi) = Rj or Rj = a,(v) where 11 €
Voo,

(iv) Range formula for variable vi is @y (vi) V...V
m(vl) where tn > 0,22 € Vr, and all the o,
v =1,..., mare closed alphas.

(v) By the definition formulae are as follows:

a) closed alphas (Jvi)a(vi) or (Vui)a(vi);
b) expressions such as ¢, 0t» where t1,t> € Tm

and { is the binary relation one from { =, #, <,
> <>}

¢) for formulae ¢, ¢ the expressions

g, @AY, PV Y

are the formulae;
d) whenever 7 is the range formula of variable
v, then (Ir)e or (Vr)e are formulae.

(vi) Ifty, ..., t, are terms, 7y, ..., r,, are range for-
mulae of v', ..., v™ respectively, and variables
inty,...,t, are the same as the set {v!, ..., v™}
and ¢ is formula then

Cryee s toTae oy Tm 1 @

is alpha of degree n, the list (finite sequence)
(t1,....tn) is the target list and ¢ is the qual-
ificator (qualified expression).

(vii) Zerms are in addition the expressions
fla),

where o is alpha and [ is
aggregate function.

some

3. Computational Model for R-Calculus

The draft of development and interpretation for C-calculus
above has the inadequacies caused by:

complexity and insufficient clearness of syntax construc-
tions which, besides our desire, contain some heuris-
tical reasons;

complexity for range evaluations (domains) where the
variable range.

These circumstances are the source for unpleasant loss
of effectiveness when C-calculus is implemented. This
gives rise to development of algorithms for query optimiz-
ing.

An outline for R-calculus will be given below which
has the following features to deal with events or knowledge
stages.
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1) R-calculus, as a rule, should be used as an extensional
language giving rise to data base queries. In this case
the cross referencing points, or assignments k € Asg
are used, i.e. the data base configurations are in-
dicated explicitly. Whenever the cross referencing
points are used implicitly then R-calculus obtains typ-
ical intensional features. This is analogous to known
frame algebra. Moreover, the intentional R-calculus
with quantifiers and aggregate functions, as will be
shown,is the same as frame algebrawith both usual
and arithmetical quantifiers.

2) Both intensions and extensions, i.e. the instantiations,
of expressions in R-calculus have an ordering as a
structure. The intentions are ordered along to ISA-
hierarchy and the extensions are ordered along the in-
duced relation of a partial order.

3) The computational model for R-calculus has the ranges
for variables both for basic and derived types, thus,
giving rise to data base conceptual design

4) Certainly, the C-calculus is distinct from R-calculus,
and whenever a data base developer deals with the dy-
namical problem domains then he applies and prefers
the more conceptual transparent R-calculus.

The features listed above will be given as follows in de-
tailed and closed manner. They are ramified as a computa-
tional model for R-calculus and are in many details analo-
gous to computational model for R-algebra. This is usually
a start point for developing the reduction algorithms both
in *calculus — algebra’ direction and ‘algebra — calculus’.

3.0.1.  Alphabet
*(L)AAVDO=|VEK S~

3.1.  Type Symbols

The type symbols emulatc attributes, Whenever o, T are
nonempty words in alphabet  then (7, 7) is typed symbol.
The symbol * is a type symbol be the definition.

3.2. Variables

Whenever a is nonempty word in alphabet V, then |« is a
variable. The variables are denoted by z, v, z, v, possibly,
with indices. Any type symbol is assigned to a countable
set of variables. In further, term ‘type’ or ‘attribute’ is used
instead of ‘type symbol’. A variable with the assigned type
o is denoted by 2, or 2™ : 7, or 7, : 0.

3.3.  Objects

=, A, V and variables are declared as objects. Let o and b be
the objects. Then (ab) and (Aza) are the objects as well.
To save writing the parentheses could be omitted in case
they can be reveal by the rule of ‘association to the left



ie. a(bc)d = ((a(be))d). The symbol = is used as ‘equals
by the definition’, symbol = is used as ‘cquals graphically’,
and symbol # is used as ‘differs graphically’.
(ab) = a(b);

Mz, - -

Mz).a = Az.a = Azg;

AL ... Tn.Q =
/\1‘1(;\1'2 W w In.(l). n > 1.

The result in substituting variable z by an object & within
the object a is denoted as [b/z]a.

.ZTn).0 ==

34. A Standard Class of Variables

et variable be treated as indeterminant. Class X of vari-
ables is determined as a standard class if for any set x1, @2,
... Ty-1. Tn of X there is variable y of X, distinct from
Ty, ...Tn-1, In. Let M be the class of objects, X be the
standard class of variables, X € 9, i.e. X is a subclass of
the class 91.

3.5. A Standard Triple

Let C[z] be the standard class of variables. They will
be referred as the individual variables below. Let P[y]
be nonempty nonintersecting with C[z] class of variables.
They will be referred as the predicate variables. Let 91 be
the class of objects, C[z] € M. Such a triple of classes will
be referred as the standard triple:

(Cla], Ply], 7).

3.6. Type Assignment

The set of free in an object d variables is denoted by F'V (d)
and the set of bound in d variables is denoted by BV (d).
The terms as the following objects:

1) (variable) variable

is a term of type &;

2) (application) if d is a term of type (3, A), e is a term of
type 4, then (d e) is a term of type A:
d: (8, A) e:d
(de) - A

In this case the definition

FV(d)U FV(e),

FV((de)) =
) = BV(d)UBV(e)

BV((de)

determines sets of both free FV(...) and bound
BV(...) variables in the application (de). (Here:
‘(de)’ is read as “d is applied to e’, where d is ob-
served as a function for the argument e, hence de is
the result in applying a function d to the argument e.)

3) (abstraction) if d is a term of type A, y is a variable of
type ¢ then (Ayd) is a term of type (4, A):

y:o d: A
(Ayd) : (6, 8)
and
FV((wd) = FV(d) - {y}.
BV((Ayd)) = BV(d)U{y}.

(Here: ‘(Ayd)’ is a function from d to A.)

A set of all the terms is denoted by T'm.

3.7. Formulae

Let (C[z], Ply], ) be the standard triple. A notion of
formula is defined by induction as follows:

i) if y is a predicate variable and zy, ..., T, are the indi-
vidual variables for n > 0 then the object

YTy oo T =Y(T1,. .., Tn)

is an elementary formula;

ii) if ¢ is an elementary formula, x is an individual vari-
able, and b € I, then

b/z]a
is the elementary formula;
iii) any elementary formula is a formula;

iv) if a and b are the formulae then the objects D a b, Aa b,
Va, b, = ab are the formulae;

v) if ¢ is a formula, = is an individual variable, then the
objects —a, YAx.a, 3Ax.a are the formulae.

Let C[z] be a standard class of the variables. The result
of substituting a variable y € C[x] by the object b within
the object a is written as

[b/y]a.

and in case a = M.c,t € FV(b) U BV(b),t £y, y €
FV{(e) U BV (c) the following is assumed

[b/yla = Az.[b/y][z/t]e,
taking z € Clz], z £ y, z § FV(b) U BV(b) U FV(c) U
BV(c).

If (Clz], Ply], M) is a standard triple of classes, then a
substitution is meant as the C[z]-substitution. If P, € P[y]
then the predicate variable P, is assumed as having been
assigned the type (71,...,7»). Herc in the type expression
the omitted parenteses are revealed by the association to the
right, and 71, ..., 7, are the types of the argument places of
n-ary predicate symbol P,,. Both the object b and variable

v under the substitution [b/yla are assumed as having the
samc type.
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3.8.  Pre-Structure

If Vs is a nonempty domain of virtual objects which is as-
signed to the type symbol 4 and ¢, is the mapping

Egr t Vigimy x Vo = V;
for any type symbols o, 7, then the pair
({Vo}.{zor})
1s called pre-structure. In addition, the extensionality (ext)

(ext) ifx, y € Viond and for any z € V,
the equation £, (7. z) = £,,(y. z) is valid
then z = y

is requested,
An assignment (referencing point, possible world ete.)

within pre-structure ({V,;}, {€,-}) is the function k, de-
fined over all the variables and such that

Ty (k) € Va (k).
A set of all the assignments is denoted by Asg.
3.9.  Structure
The structure is defined as a triple

({Vo},{gor, Val}),

such that
({Vd}- {Ea'r)

1s a pre-structure, Val is the evaluation mapping

Val : Tm — (| J V)%,

€T
where for set of all the types T
1) Val(z,) € V19 and
Val(zg, k) = z,(k)
for any k € Asg;

2) Val((de)) = (g5-(Val(d), Val(e))) € VA9 where
subterms range respectively Val(d) C V(’j’sﬁ,
Val(e) C V%9 and

Val((de). k) = g5-(Val(d, k), Val(e, k))

for any k € Asg, where d, e are the typed terms, d :
(o.7),e:0;

3) foranyce V,
eor(Val((Az.d), k), c(k)) = Val(d, k%),
where d : Tisaterm, x : 7, y : ¢ are variables and

. z(k) fory # =,
Bika) = { clk) fory=x.
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An explanation of this switch in the definition of evaluation
Val is as follows: Val((Az.d), k) is such a function & that

DV, (k) — V. (k)
and for any c(k) € V, (k)
D(c(k)) = Val([c/zld. k).

In above the value of Val((Az.d), k) is defined if and only
if all the values Val([c/z]d, k) are defined, and, in addi-
tion, the object (function) © has a type (o, 7). Such a func-
tion @ is mentioned as the generator for an object Az d.

3.10. Substitution

Let C[z] be a standard class of variables and define a func-
tion g from variables to terms such that g(x) has the same
type as x (substitution). A function s(g) is defined so that
every free occurrence of variable y in s is replaces by g(y)
(multiple substitution). More rigorously, let [t/x]d be a
substitution of the term ¢ for every free occurrence of z
in d, where d is a term, z is a variable, and ¢ is a term of the
same type as z. Then:

1) [t/z]z =t

2) [t/x]ly =y, where x £ y;

3) [t/z](de) = ([t/z]d)([t/z]e);

4) [t/z](Az.d) = Ax.d;

5) [t/z](Ay.d) = Ay.[t/z]d, wherey £ .
The substitution g is called regular if for all the variables x
and y

FV(g(z)) N BV(g(y)) = 2.

3.11. Continuation of Val

Given a class of formulae and the boolean algebra (B, <
). For any n-ary predicate symbol P € P[y] the n-ary
function

P ngsg x ...chisg — BA%9 B = {true, false},
is an intension of P and the n-ary function
P(k): Vs, (k) x ... Vs (k) — B

is an extension of P, k € Asg.
Accepting by the definition that

Val(P) = P. Val(P,k) = P(k)

leads to the concepts of predicate symbols.
An analysis given below shows that the definition of a

concept (of an intensional) is essentially the same as the
definition of a frame.

The following gives the definition of a function that as-
signs value to the formulae. For ¢ € V; assume that

Val(c, k) = ¢(k)



for any assignment k& € Asg (data base configuration), and
Pil...tn EP(tl,...:tn),
and notations ¢ and 1) are used for arbitrary formulae.

l) VaZ(P(let'n)) = E(Ftval(tl):"'!Va'l(tﬂ))!
where (xy,...,2q4,) for comresponding zq, ..
Iy 18 an abbreviation

|

B[P ol =8BR8 ) i 1)

= c{“'(5(3“%:52)1-“):3"'71%-1)
and every occurrence of ¢ means corresponding £,,.

1) For k € Asg the equation
Val(P(ty,...,tn), k) =
=e(P(k), Val(t, k),...,Val(t,, k)

is such that ‘an evaluation of the extensional for “en-
tire” drops down to evaluations of the extensions for

EEEEY

“parts” *.
2) Val(Adp) = inf(Val(d), Val(tp)) for formulae o, 1.

2 Val(ng, k) = inf(Val{db,k),Val(U),k)) for £ €
Asg.

3) Val(vey) =sup(Val(s), Val(¢)) for formulae ¢, 1.

3 Val(voy, k) = sup(Val(e, k), Val(y, k) for k €
Asg.

4) Val(D ¢ip) = (Val(o) => Val(1))) for formulae ¢, 1.

4) Val(D ¢y, k) = (Val(g, k) = Val(.k)) for k €
Asg.

5) Val(3rz.¢) = fgbyl){\/al([c/x]qb)}.

5) Val(3BAz.g,. k) = sup {Val(lc/z)¢p,k)} for k €

e(kYeVs (k)
Asg.

6) Val(¥Az.6) = inf {Val(lc/z]9)}.

6') Val(vAz.¢, k) =

c(k)?bf%(k){Val([c/a:]qﬁ,k:)} for k €

Asg.

7) Val(Az ... zy,.0) is a function ¢ (generator, gencrat-
ing function):

@ Vs x...x Vs — BA%
such that forany ¢; € Vs, i=1,...,n

écry. .. en) = Val([ey, ... Tn]0).

,Cn/:!:],...,

The value Val(Az; ... 1y,.¢) is determined if all the
values

Val([C],. % % ucn/‘rlv' Bt .SE,;}(,D)

are determined, and, in addition the type for ¢ is

where B is a boolean type.
7') Similar considerations give

5(]{) : V;El UL—) Koy X Vé,,(k) — B.

The rest of formulae are derived by the obvious trans-
formations.

8) Val(~¢) € BA%9,

8) Val(—¢, k) = trueif and only if Val(é, k) = false
for fixed configuration k € Asg.

3.12.  Connection with Boolean Algebra

Consideration here will be done using schemata for R-
algebra.

Let 7 be a set of all the types (attributes) for given some
set of basic types. Every type symbol 4 has been assigned
with a set Vs. Certainly, the concepts of types and virtual
domains V; are used.

Let determine a set V as

V:UVO

scT

and use its power set P(V) with associate inclusion rela-
tion C:

for f, g € P(V) assume that f C g if and only
if membership ¢ € f, for any ¢, implies ¢ € g.

This consideration is intensional in its nature. Now con-
sider the pair

(P(V), ©)

which is a complete boolean algebra.

The following theorcm gives the nceded details for in-
stantiations in a computational model.

Theorem 3.1. If ¢, ¢, x are formulae (C [z], Ply]
N)-formulae) then ¢, ¢, x are corresponding  ele-

ments in boolean algebra, ; v, x € P(V) and g_r)
= Val(Azy .. .;.9), v = Val(y ... ym.0), ; =
Val{Azy ...zn.x), L, m. n > 0.

Proof. In this case (_b, E, ; in the configuration k ¢
Asg generate a set of substitutions for which every of the
formulae ¢, ¥, x have values frue.
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1) Let (C[x], Py}, M) be a standard triple, where C[z] is a
class of individual variables, P[y] is a class of predi-
cate variables, M is a class of objects, where C[z] C
Nforl=m=n=7r > 0and types of variables i;, v;,
z; are the same forany ¢ =1, ..., 7

An inclusion

Val(Azy...z..¢, k) € Val(Ay; ... y-.0, k)

is denoted by

o(k) < w(k).

Note that in case of concepts the equation for 15 A is
immediately derived:

—Asg —Asg
@ ISA

and if 2y, ..., 2. € FV(¢)and iy, ..., yr € FV ()
then formulae ¢ and ¥ are called as similar, and this
is identical to the definition of 1S A-similar frames.

2) A verification of the properties for boolean algebra is
analogous (excepting the notations) to its verification
in case of R-algebra. An dSblepthﬂ of  one-to-one
correspondence between P and ¢, @ and v, Rand X.

3) Letnow r < min{l,m,n} and the variables ;,, y;,,,
zx,» have the same types 7, forv =1, 2, ..., r. Let
U1, ..., Uy are the variables distinct from variables z,,,
ygayforae=1, .., 8=1,...,m;y=1,...,m,
but the type of v,, is the same as type of =;,,, Yiws Tk

Consider the functions

o, = Val(dvi...ve[v,. .. 0efZ0, . 1] ),
¥, = ValQoi...vfor,e e v/yp e gseld),
X, = Val(dvr. oo (o, onfzk, o 2ke)X)s

each of them has the type
(Tl._. g ,Tr,B).

It could be shown that the conditions for boolean algebra

are now valid, i.e. d)r ¥_ x, are the elements of boolean
algebra. Note that conceprual consideration leads imme-
diately to a conclusion: I.SA-similar frames generate the
boolean algebra.

3.13. Connection with Algebra of Relations

Let ¢ and 1) be the formulae. Formula ¢ is mentioned as
l-ary if 1, ..., 2; € FV(¢) and formula 7 is mentioned
as n-ary if 21, ..., z, € FV(¢), , n > 0. Let ¢ is -
ary formula and v is n-ary formula, (C[z],P[y},™M) is a
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standard triple, @, and ¢ arc generating functions, m <

min{l, n}:

0, =

= V LEA® o« ool [0 e oo D fBis 2 05 B Jboms 1)
E i(/\’L; coo < Ul (B1) v (U )5 )
=, (L) ... (T ) (),

P, =

= Vai()wl --~U1n-[vlz-- 'Urn/-J'i ...... Zj m,]rL 2111y k}

= Eal()\vl e UmPm (1) . A{um). k)

=9, (k) .. () (K).
Assume that
7(k) = |7, K|

1s used for denoting a class of elements from V. (k). The
notation

T, k| C Vo (k)
is referred as a domain for type T in configurationk € Asg.
The functions ¢_ (k) and ¥ (k) are the mappings:

X |Tm. k| — B,

P
X ... %X |Tm. k| — B,

such that forany 7; € |7, kl,i=1,...,m

"3

The generating functions qﬁ (k) and ¥ v, (k) are referred as
relations (target relations, "R-relations etc. ) in configura-
tion % defined on a cartesian product of the domains (ranges

of virtual objects) |7y, k| x % [Tkl
6, (@)...(En) = Val(ler,-.. em/v1,- .., 0m]
i [U;,...,Ugn/Iﬂ ..... .n"‘;-m-.](f) A
v.(@)...(Em) = Val{ler,....em/v1,.-.,Vm)
[Uls vy Um/zjl-, s ij]lf’, k)

The instantiation above will be denoted by

8., (71,0 s T ) (K),
dm ; (Th g me)(k)i
where 7y, ..., Ty, are attributes. Note that the results above
are similar to thosc for R-algebra besides the term ‘predi-
cate’ which is replaced by the term *formula’.

The definitions for operation of intersection I N'T', union
UNION, and difference DIFF on generating functions

(in case of formulae) are similar to those for relations (pred-
icates).

DIFF: Whenever for k € Asg

inf(¢, (), ¥, (k)
sup(v,, (k), ¥, (k)

il
o
=

H
o



UNION(@,. ¥,) UNION(,(k), 9,(k))

AA
¢ 2 ?,(k) (k)
ES/ 15\ /ISA / \ /

DIFF@. %)  INT(@, %) DIFF(@,(k), ¢ (k) INT(@,(K), ¥,(k)

Figure 1 Boolean algebras: intensions (/.S A-algebra) and
extensions.

then intension (frame) r,/)m determines the compliment

for intension (frame) ¢_,

= —Asg
COM PL((;’)m)-‘”S' =
Note that
COMPL(IMPL( Dy J)m})

= inf(¢_, COMPL(¥, )
s DIF‘F(qb LP,)

(difference of frames).
INT: Determine that

INT(g,, ¥, ) = inf(o,,

m’ "l )

(intersection, conjunction of frames).

UNION: Define that

UNIOI\’(QS 1!) }gsup( s ¥)
(union, disjunction of frames).

The proof that definitions of DIFF, INT, UNION
above hold in boolean algebra.

Example 3.1. Let

éx = {c,c2,03,05},
Y, = {e2,c,06,c8}
Then
DIFF(¢,(k), ¥, (k) = {ei,c3,05)
INT(,(K), B,(K) = {ez)
UNION(¢ (k), Y, (k) = {c1,02,03,¢4,0C5,6,C8}.

A sample of both intensional boolean algebra (ISA-
algebra) and extensional boolean algebra are given in
Fig. L.

3.14
Let

Derived Types — Attributes.

be [-ary formula and
’ILF & (Al,,...An)
be n-ary formula, where ¢ and ¥ are (Clz], Ply], 91)-

formulae.
Define the generating function as follows:

o(F) =
P(z;) =

In addition, for the definitions

Val(Ax;.¢)*%9, 0 <i < |,
Val(Ar;p)A4%9, 0 < j < n.

|6, k] =

inf (|0;, k|, ¢(Z:)(k)),
A;, E &

inf(|Ag, k|, ¥(Z;)(k)),

following restrictions, written as the abbreviations, are

valid:

|65,k C 16i,kl, o,k < @)k,
1A%kl 1Akl |AL Kl C Y(F)(k),
and, without ambiguity for known k & Asg:
5 < & 5 < ()
AL <Ay AL < (E).

Here: d6;, A; are generic types, “polynomials” E(Ti), g—&(fj)
are restrictions (relationships), and

& =

(A
AL =

inf(8;, ¢(Z:)),
inf(4;, ¥(Z;)),

are derived types under restrictions E(EI) and ¥(Z;) re-
spectively, where type of T; is J; and type of Z; is A;.
The domains (sets)

151, k]
A% k|

Vﬁi (k),

c
C  Va,(k)

are derived domains.

The derived domains defined as above are elements of
boolean algebra. ~Of course, every derived domain cor-
responds to m-ary generating function which are the ele-
ments of algebra (algebra of generating functions, algebra
of frames etc.). This is a “conceptual” algebra, and its m-
ary operations are defined by a straightforward accommo-
dation of the definitions above.

Note that the dual definitions of derived domains arise
by replacing ‘inf’ by ‘sup’ and changing the directions of
relations C and < to the opposite one.
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3.15.  Connection with Relational Calculus (C-calculus
by E.F. Codd).

Below the approach based on generating functions is ap-
plied to conform the computational model of C-caleuius.

Assumc that the following generating functions are de-
fined:

G (Bi . 8) = Val(hay...z.0)A%,
A e ) = Vel .., Zm-) A58,

Of course, for k € Asg

G(k) S 16y, k| x ... x |d, K,
wm(k) C AL K x...x|Any, k;

the functions ¢, and ¢ _ arc of types (4),...,d;) and
(Ay,..., An) respectively with the corresponding associ-
ated domains [(d1,...,8;), k| and [(Ay,...,Ap), k|.

More rigorously, if the derived types are used, the fol-
lowing definitions are valid:

By ®) = inf((1....,8), &),
(A1, &) = inf((Ar,..., Aw), ©.).

m

Now the expressions of C'-calculus which is sensitive to
knowledge stages will be represented.

1) Givenaschemata (R1,..., Ry), usc the standard triple
(Clz], P[z], M).
2) If Pyforj=1,..., N are predicate and z, ..., T, are

individual variables for n > 0, then object
Pl s yiFn)
is an elementary formula referred as range term.

3) Individual variables z; : 8, and individual constants o
d; are included into C-calculus, each using its own
type.

4) If 0 € {=,#,<,<,>,>}, when # is used scparately
for each pair of types', then

aff = a3

is an elementary formula referred as join rerm for any
a, A which are either individual variables or individual
constants. Any of combinations ‘variable — variable’,
‘constant — variable’, ‘variable — constant’, ‘constant
- constant’ are allowed.

5) Define well formed formulae (wff) of C-calculus:

(1) Every elementary formula is wif.
(it) If [ is wif, then =I" is wff.

! Assume that there is a family of binary predicates 0.
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(111) If F], Fg are Wff, then FI A Fg and T1 Vv ]"2 are
wif.

(iv) If I' is wff and a set of variables {z1,...,zq}
€ FV(T), then 3"A\zy ...z, is wif and
YAz, ...z, U is wif, where

F'Azy .o D = Iy (T Iz, .2, 1),
ViIAZL . zn D= VAz (VP iz 2, T),
forn > 1, BV(Q"Ax; ... z,.[') = BV(T) U {
Ty, i, Ty ), @™ € {37, V7).
6) Assume that A is some wiff for which {z,... At €

FV(A). Commonly used notion of subformula, i.c.

those fact that A is subformula of wif T', is denated

by I'(A). The means of quantification are denoted by
QPAz ooy DAY

7) The range quantifiers are in use by the definitions
FT(A) = Ftdzy...z, (T AA),
VIT(A) = Y"Azy...z,.(<CVA).

Here the logical connectives and predicates ¢ are writ-
ten in infix form whenever there is no ambiguity.

8) Range separable wit are those like
Uy AUsA..AU, VYV,
where
an>l;

b) allof the U;, 2= 1, ..., n are proper range wifs.
Note that U; is a proper range wif if its sct of
variables {x;1,..., 24} for [ > 1 is the same as
its set of free variables FV (U;);

c) formula V is either empty or:

all its quantifiers are ranged quantifiers;
FV(V)CFV({U ) U...UFV(U,);
V' does not contain the range terms.

9) Alpha-expressions, or expressions of C-calculus, are

objects
ALy B W =
- )\(-le--,zm)-pv':‘ (111"'1"":771) : W,
where

W is range separable wff;
{21, ., @m} C FV(W).
10) Add to a class of join terms the terms

fi1(@1)8 fa(as),
where
a1, @3 are alpha-expressions;

J1. f2 are function symbols (aggregate func-
tions), f; € {SUM, MAX, MIN, AVG, COUNT,



Consider entities f;(c;) as added to a class of aipha-
expressions.

3.16.  Evaluation of Alpha-Expressions

Now, within framework a computational model, alpha-
expressions are ordinary objects. In further considerations
the aggregate functions are not involved. However, taking
them into account does not add the principle difficulties.
Conformation of the further results, given below and based
on 1)+9) above, to the extended alpha-expressions with ag-
gregate functions is straightforward and uses some syntax
complications as outlined in 10).

3.16.1. Relationship with Algebra of Relations

The relationship with algebra of relations, i.e. considera-
tion of R-algebra for alpha-expressions from C'-calcuius is
easily obtained by the generating functions.

First of all, for alpha-expressions Az, ..., 2;).W; and
Az1,.. ., 2). Wy the corresponding generating functions
are as follows:

s, (k) =

= Val(dvy ... vm.[v1,- .-, vm/Tir, - - Tim] W, )
= }/_al{)\'ffi coeUm W (1) . (vm)’ k)

i ]"V[!m(ii'lrl) st (ﬁfm)(k)l

I'[)n‘L(k) il

= Val(dvy ... vm[v1,. ., vm/ 251, - 25m]Wa, k)
= Y?’I()\Fi RE Um.-u’rz(vl) S (’Um)‘ k)

=W, (7). (T5)(K),

where 0 < m < min(l,n), and k € Asg.
Then apply the same reasons as in case of evaluation of
expressions in R-calculus.

3362
tion of Algebra of Frames

Relationship with boolean algebra and derivation of alge-
bra of frames is established the same way as in case of R-
calculus, including INT,UNION, DIFF.

3.16.3. Derived Attributes

All the apparatus of derived attributes over 1.5 A-hierarchy
can be obtained as well, resulting in R-algebra of expres-
sions from C-calculus.

4. Conclusion

The feature of the computational model, described in this
paper, is in explicit indication of the subject within the for-
mal system via “referencing points” & € Asg. Compare
with intensional meaning of Asg as set of assignments, ac-
tual configurations of database, subjects, time, ‘stages of
knowledge’, ‘possible worlds’ etc. This determines the

Relationship with Boolean Algebra and Deriva-

computational model given here from the commonly used
models for relational languages.
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