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Abstract'

Consider the elementary case of the no stationary
elastic deformation of hollow cylinder problem
under action of internal and external pressure. In
exact statement is gotten the problem with free
boundaries. Using group of the transformations
admitted by the equation some decisions of a
problem dependent on infinite number of constant
are found.

1. Introduction

Consider the equation

v afov

— = —F7r Yy 1
o or\ar J W
with boundary conditions

v(LR(®))=R()-R () (=12),

p_(t)+(&+2y)%+/lR,“v ={,

where r = R.(f);( =1,2) and initial data

\f|’:,N =v,(r); v, |r:f“ =v (r); R,L:,n =R(E)
We use given values
pJ([)7 p.(‘fo) T p.m Re(Io) = RfU’ /1! /us po

and coordinated conditions v, (R,O) =0, (i=1,2).
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According to the above group classification, the equation
(1) admits the operators:

X, =0,

X, =18, +ré, —3vd,;
X3=%—([3+r2)6l+?‘a,—!3fvav; (2)
X,=vd,;

Vv

Y o=g(t,r)d,; g, =g, +r's, ~rlg

2. Problem Setting

Here we consider invariants solutions with respect to
three different two-dimensional sub algebras of the
algebra (2):

A X, +aX,;
B. X,+aX,
C. X\ +X,+akX,; .

A. X, +aX, Invariant Solutions Class

Invariant solution has the form
vy, =7, vaa 7%
with special boundary
p,(6)==2(u+ A Fy(R?) -
—(A+2RI Ty (RI?), j=12,
where R,,..'a“;y( Rf:'z) =R,-R,
and special initial data
v () = rt;"%y(rlt:‘),
v(r)=(a- %)rzgf%y(rzrc_z ) =275 Ry (rzf(;z ) .

We obtain the problem on characteristic value by the
equation

x(l—x)y"+((V——;—)x+2)y'—%v(v+l)y=0.

Here y(a)= y(b)=0, sothat a=Rt?, b=RLt’
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B. X, + X, Invariant solutions class
Invariant solution has the form

_—_2_a
v=rteolq),

where g =r—tr"', and is determined by the equation

g e"+2(g+2a)p' -39 =0, p(a)=p(b) =0,

‘,2 [2
sothat a= R, ~—2%, b= R,y ——=
tORy Ry,
Using the change  ¢(q)=w(p)p’e ™  with

p=-q ', b(b—1)=2 we obtain the boundary- value

problem on characteristic value a”.

py"+2by' -4’ py =0,

Rm I RZG l
—_—_— = :0
W(Rlzufrgj W[Rzzo"té

solution’s

The w = pZ,(2cip), where

Z,=CJ,+C,Y, - general solution of Bessel equation,

equation is

C,,C, — arbitrary constants.
C. X, + X, +aX, Invariant Solutions Class

Invariant solution has the form

x- iwarctg %z
v=re T R p(p) |
42

-

where p=

i

Obtained equation

(P +8)0"+2(p-2a)p' -39 =0

with change ga:ry(gé%p), was led to hyper

442

geometric equation

b5 oo~ S0

with boundary conditions 7(a,) =7(b,) = 0.

where
i :l"‘j’_l""",tg - Rizc -R |,
2 420 R,
1 1 (& +R,
(i e - R,
2 42 Rzo
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