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Abstract’

The study implements a  two-dimensional
mathematical model of the ideal electrochemical
machining (ECM) process at processing by the
polygonal cathode-tool; the numerical - analytical
method of the decision of a problem is submitted.
In solving the problem of electrochemicai forming,
it is possible to use the method of hydrodynamic
analogy, where the flat potential electrical field is
replaced with a dummy flow of an ideal
incompressible fluid. Then the considered
problem is interpreted as a problem of the theory of
jets in an ideal fluid. The allowance for the
machining mode, electrolyte properties vyields
nonlinear conditions on borders at the free surface.

1. Introduction

Electrochemical machining (ECM) of metals is an
advanced method for the production of workpieces from
metals and alloys with a specified shape, size, and
surface quality [1]. The method is based on the principle
of the local dissolution of the anode — workpiece in the
electrolyte flow. The cathode — machining tool — is
represented by an electrode with a specified surface
shape.

2. Model of the Process

For the first approximation in the theoretical analysis of
the ECM the ideal process model is used. In an ideal
process, the electric field can be described by the Laplace
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equation V2 = 0, where u is the electric-field potential.
The values of the potential u, and u, at the anode and

cathode surfaces are constant [1]. The steady distribution
of the current density / at the stationary anode boundary
can be determined by the equality

n(i,)-i, = pV.cosf/e, (1)
Where # is the
, =k dulon, is the anode current density, x is the

specific electrical conductivity of the medium, g is the

density of the anode material, £ is the electrochemical
equivalent of the metal, & is the angle between the

vector of the cathode-feed velocity V. and the unit vector

current efficiency coefficient,

of the outward normal to the anode #_ . The dependence

7(i,) is described by the hyperbolic equation [2]
n=a,+afi,. (2)
Here a,, a, are constant coefficients.

Let wus pass to the dimensionless variables
p=(u-u)/(u, ~u, ) and n=n,/H . The characteristic
length H is determined by the
expression H =« (u, —u_) /i, . Where iy =pV. [ is the
characteristic current density.

The function

potential satisfies the Laplace equation V' =0 in the

interelectrode gap. The following conditions are satisfied
at the boundaries of the electrodes

iy corresponding to the electric-field

w,=1, w, =0. (3)

The steady condition is fulfilled at the anode boundary

ow _1 [i~cost9}=a+bcos€, 4)

rﬂ

on a,

where a=a,/(a,1,), b=-1/a,.
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In formulation and solving problem, the hydrodynamic
analogy of the electric field is employed, according to
which plane potential electric field is replaced by a
fictitious flow of an ideal incompressible fluid [3]. If we
introduce the complex potential of the electrostatic field
W=p+iy, we obtain dw/dn=V along the line
w=const (in the case of the hydrodynamic
interpretation of the ECM problems, V is the velocity
vector of the fictitious flow). In standard hydrodynamic
terminology, the problem of anode-shape determination
is called a free-boundary problem.

3. Problem Statement

3.1. The Problem Review and Basic
Equations

In work the flat-parallel problem of steady
electrochemical shaping is considered. The problem will
consist in definition of the form of a detail which is
formed at processing by the polygonal cathode-tool.

The possible scheme of an interelectrode gap is
submitted on a figure 1. Here ACDEB — border of the
cathode, 4B - anode boundary. Rectangular coordinates
x and y are attached to the cathode. It is assumed that

the cathode moves in the direction of the ordinate. Points
A and B are in infinity.

Let's consider dummy flow of an ideal incompressible
fluid. The region occupied the fluid is bounded by the
free surface 4B and the rigid boundary ACDEB.

i /~\ \\____//‘\\
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Figure 1. The Scheme the Interelectrode Gap
in Different Planes: a) the Physical Plane;
b) the Auxiliary Plane
To get solution we introduce the auxiliary complex
variable ¢=¢£+/n, which varies in D, (|t| <lLnpz 0) :
with the correspondence between the physical z =x+iy
plane and auxiliary semicircle r =& +in shown in figure
1, and to a free surface there corresponds an arch of a
circle t =exp(io), o €(0, 7). To points z, on the rigid

boundary in which the vector of velocity changes
direction, there corresponded points & (m =L M ) .Then,

we search for z(r), which conformably maps area D,
onto the physical plane. For the solution of a problem it
is necessary to find a derivative of the complex potential
W =gp+iy with respect to the auxiliary variable and
Zhukovskii's function [4]

1 dw v v
Y =ln———=In—-i@=r-if, r=Inh—, (5)
Y de ¥, v,

Where: V' is the module of the velocity, ¥, is the value
of the module of the velocity in point 8, @ is the angle
of the inclination of the velocity vector to the x axis.

The values Im B (z) on the boundaries are the constants

(4). Using the method of the singular points the
derivative dW /dr can be defined [4].

The imaginary part of Zhukovskii’s function on the rigid
boundary accepts piecewise constant values:

e(cf) :Bm, (é:m <G <Gpay M =W)!

(6)
'fn =-1, §M+1 =1
From formulas (4) and (5) follows
a+beos@(t)-V,exp(r(t)) =0, -

t=exp(ic),o €0, 7].

Where ¥, = a+bcosé(1), from here follows

r(1)=0. (8)

Function jy(u) is presented as the sum [5]

x()=r.(t)+o() (9)

Function #, (1) corresponds to auxiliary flow. Here the

velocity absolute value on the free surface the constant
and V, is equal. The function m(r) is an analytic

function in semicircle D, and function w(r) is
continuous in D,. For function z,(¢) the following
boundary conditions satisfied

Imz, (&) =-6(¢), £e[-11],

Re g, (exp(id)) =0, oel0,x]. L1y

The function . (t) can be constructed by the method of
the singular points [5]

w@=nl (1[5 |-,

m=l tgm - 1

a, = (Bm —Bm_l)/ir, m=1,M,8, :8(—1).

(11)

Where £, are the points of discontinuity for function

8(<).
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Applying designations

T= Im;(_(exp(io*)) .
4=1Im w(exp(io-)) , A= Rea)(exp(ia')), we  shall

write down boundary conditions for function @ (r)

a+bcos(T+ u)—V,exp(2)=0, (12)
Imw(&)=0, fe[-1,1], (13)
Rew(1)=0. (14)

Taking into account boundary conditions for function
w(r), we have [5]

o)

o(t)=c+Xct', c=-. (15)
k=1

k=1

The coefficient ¢, is chosen so that the function y(t)
satisfies the boundary condition (12). The problem is
reduced to solving equations (12). It is solved by the
coliocation method. After definition of coefficient ¢, of

series (15) all geometrical characteristics can be
determined from the formula
1 aw
z(1)=— |exp{—x (1)) —dr + C. 16
(=3l ) (16)

3.2. Anode-Detail Shape Determination in a
Neighborhood of the Channel for Submission
of Electrolyte

As an example we shall consider the following schema

(fig. 2). The electrolyte moves in a working zone from
the channel located in a body of the cathode.

by

d
AD C E

- ir 4 & L{ ;

Figure 2. The Scheme the Interelectrode Gap
in Different Planes: a) the Physical Plane;
b) the Auxiliary Plane

Here ADCEB - border of the cathode, 4B - anode
boundary. Lines CE and DE are borders of the channel.

The width of the channel is equal L. The origin point of
the Cartesian coordinate system is chosen in a point D .

The ordinate of a point £ is equal y, . The vector V.
specifies the feed direction of the cathode. Points A, B
and C are in infinity.

To get solution we introduce the auxiliary complex
variable ¢=¢ +in, which varies in D, (|!| <lnpz 0) ,
with the correspondence between the physical z=x+iy
plane and auxiliary semicircle ¢ =& +i7 shown in figure
2. Then, we search for z(r), which conformably maps
area D, onto the physical plane. The function dW/dr

can be constructed by the method of the singular points
and looks like

7
aw - - (17)
dt 72'(17!')
According to (8), (10), we have
1 t+d
y(1)=Ilnt—| = 1 -
R
(18)

1 I~
—{=+4|n + fri 1)
[2 ,BJ (I—ta] Bri+o(t)
Where d,e is the coordinates of points D,E in

auxiliary semicircle, @(t)=c,+ ¢, 1*, ¢, = —Z % -
k=1 k=1
From formulas (17), (18) follows

z(1)

~ dexp(

E—me) ;[R(r,d,e)exp(w(r))dr,

0542 osea (19)
B, d o 1 : {r;f:) {z’erJ .
r(l—r) l-ze l+7d

/

For determination of mathematical parameters d, & we
have two equations:

4
L= ;V:Re(F(d,s)), (20)
Y =ilm(F(d £)) (1)
) ]!,'V ] E]

0

where F(d,£) = exp(Axi) jR(r,d,e:)exp(—a)(r))dr .
~d

The unknown coefficient ¢, are defined according to

boundary condition (12).

4. Numerical Solution of the Problem

4.1. Numerical Algorithm

The collocation method [6] is used for numerical
solution. A limited number of terms remain in the sum
(15). The boundary condition (12) is fulfilled at the

discrete points Zw ~ amin, m=1n

t=exp(

of the circle arc

io : .
). The system of the nonlinear equations for

calculation of coefficient  is solved together with the
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equations (20), (21) for definition of mathematical L ' T Y 1 T T T T T 7
parameters d, £ . — T

4.2. Computation Results 0

The calculations were performed for the following
conditions. The characteristic current density was ¥ 7

i, =100 A/Cm2 , and the coefficients @, =0.906 and 1 . , . i . 1

@, —~12.817 corresponded to SKhNM steel in 15% 4 0 ! 2

Figure 7. Calculated Anode Boundary
at a=1/3,8=1/4,L=2, y, =0

L=

solution of NaNO,. Geometrical parameters o, 3, H ,

Ve vary.

i P . oy 5. Conclusion

L Lo T " In work on the basis of two-dimensional mathematical
model of the ideal process, the problem of definition of
9 the form of study anodic boundary is solved at
processing by the polygonal cathode-tool. The numerical
simulation of a problem is executed for various special
-1{ L 1 L L ' 1 I cases.
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Figure 5. Calculated Anode Boundary
at a=p8=1/3,L=2, y, =0
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Figure 6. Calculated Anode Boundary
at a=p4=-13, L=2, y; =0.
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