Experiments with CamLab Program

S.0. Salnikova
Department of Cybernetics
Moscow Engineering Physics Institute
Moscow, Russia
e-mail: withmusic@rambler.ru

Abstract!
We’ll examine the program CamLab, that simulate
the work of Categorical abstract machine (CAM),
and calculate various expressions, as a result we’ll
formulate rules how to work with the program, it’s
merits and demerits.

1. Introduction

The program CamLab is the illustration of the
Categorical abstract machine work and conversion of A -
terms into the categorical code.

Categorical abstract machine — it’s the version of
computation theory, based on categorical combinatory
logic. CAM uses special combinators, that in point of fact
represent the instructions in a programming system.

The primary task of CAM is to calculate the value of
expression. Expressions, written as A -terms, first are
converted to the form of instructions, understandable to
CAM, then are executed consistently, instruction after
instruction.

The Program is consists of two parts. First part is
conversion A -terms into the categorical code. Program
displays all calculus, including de Brauijn’s encoding.
The second part illustrates the Categorical abstract
machine work, represented by the table, including Term,
Code and Stack columns.

Thus, while working with this program, one can
understand how does compilation of the compiling code
oceur and than how can expression values be received.

But the program does not compile all expressions. The
main is find out, what form of expressions is
understandable for the program, and formulate
transforming rules of the initial expression to the wanted
form.

In the first part we will give the theory to understand,
what the program is based on, thus creating the necessary
prerequisites for the further conclusions.

Proceedings of the 9" International Workshop on
Computer Science and Information Technologies
CSIT’2007, Ufa, Russia, 2007

Next we will give an example of the *good” expression,
illustrating the work of the program.

In the third part we will view four expressions, which
could not be compiled at first. We will try to establish the
reasons and to give the prove, resting on the theory.

As the reasons are different for the all expressions, finally
we will formulate the set of rules, using which one can
effectively work with the program CamLab.

2. Theory

Program CamLab works both with lambda-terms and
with expressions, already transformed to the categorical
code. How does the compiling to the categorical code
occur?

The theoretical footing is combinatory logic, cartesian
closed category and the de Brauijn’s numbers [1].The
cartesian closed category can be interpreted like that:

1. in the category are used composition and identity;

2. in the closed category ordered pairs, the first and the
second projections are added;

3. in the cartesian closed category functional spaces are
added, so currying, applying and exponentiation
operations are legal.

For the expression calculus the conception of
environment is important. Because the calculus value of
the expression represents as a reflection, in which the
first element is identifier I and the second is the
environment o, and the result is the value of the

identifier I

”H -:identifier x environment — value

Let the environment be in form of:

[[[[(), an Vi - II,L vo]

The computation theory can be represented as:

Workshop on Computer Science and Information Technologies CSIT*2007, Ufa, Russia, 2007

67

(ass) (x ° y): = x(yz)
(1) Fst(x.y)=x
(snd) Snd(x, y): ¥

(dpair) (x,y)z=(xz,yz)
e(A(x)y,2)=x(y.z)

{quote) ('x)y =X

(ac)

The de Brauijn’s encoding is needed to avoid the
collisions of binding variables while replacing the formal
parameters by the actual ones. Note that important
knowledge of a variable is the depth of it’s binding, i.e.
the number of symbols A between the variable and it's
binding 2 (excepting the last operator). For example,

Ay (xyx)y = L(AA1)0 (1)

Thus using the de Brauijn’s encoding and the
computation theory rules we can transform expression
into the categorical code.

After compiling, calculation of the expression value
occurs, using CAM instructions [2, 3].

The machine structure is consists of three parts:

T —~term, in which area the calculation environment is
formed, and at the the final result of calculation is
written:

C -code, in which area the categorical form is written:

S —stack. in which area intermediate value is written
(auxiliary memory).

The work of abstract machine is based on eight
instructions, seven of which are static combinators. i.e.
they are available before the calculation:

(.)Fst

The eighth instruction is the dynamic combinator & .
which forms instruction during the process of value
calculation. Here is the table of CAM instructions in
order to understand how is the each instruction executed:

Snd A '

Table 1. Cycle of CAM working

For the convenience the following mnemonic notation is
used:

Table 2. Mnemonic Notation for CAM Instructions

Fst | Snd | < T, [> E
Car | Cdr | Pus | Swap | Cons | App | Cur | quo
h | le

1 Initial configuration Resulting configuration
Kl c § | c? s
i (s.0) car.C 8 s e S\
(s,0) cdr.C & : [
$ (qum‘e(‘)fi S c E c
) {curC)C1 | § (C1s) Ci
s | pushC | S | S | C s
t ; swap.C | 5.5 | € tS
|
t cons.S | 5.5 | (s1) | ¢ S
(C:s,0) | appC | 8 (5.1} ‘ cac S |
? | l |

Experiments with CamLab Program

68

Now we know what work of the program is based on.
Let’s try to understand what expressions it works with.

3. Experiment

Here we will calculate a value of the expression, which
cites as the example in the program.

The example is:

(Ax((Azz[x2])+))3 2)

It is not difficult to understand that this expression is
calculating the value of adding 2 to 3. So we should
receive J as a result.

Compiling into the categorical code gives:
De Brauijn's encoding:
(Ax((Az.z[x,2])+)3
(2((22201,20)+)3
(A((A0[1,2])+))3

A -term compiling:
(A((ASnd[1,2])+)3
(AL(A.Snd[FstSnd 21)+))3
(A((A.Snd[FstSnd , guote(2)])+))3
(A{(A.Snd < FsiSnd . quote(2) >)+))3
(A <cur(< Snd, < FstSnd, quote(2) >> app),
cur(edradd) > app)3
cur(< cur(< Snd,< FsiSnd , quore(2) >> app).
cur(edradd) > app)quote(3)

Compiled expression:

<cur(<cur(< Snd, < FstSnd, quote(2) >> app),
cur(cdradd) > app), quote(3) > app

In the Tab.3 we can see value calculation, using
CAM instructions.

Table 3. CAM’s Work
INTT C | S

1

- .

| 0 | <cur(<Snd,<Fst][]

- | Snd , quote (2) > > |

| | app). cur { cdr add |

) > app } ., quote (3) |

| >app]
push cur (< cur (< | []

Snd , < Fst Snd |, |

quote (2) > > app) , |

cur (cdradd) > app |

|). quote (3)>app |

i
| 2 :0
|
\
|
|

- &3 Prebankmiptcy

% - Delinquency
3 . acl

- Implementation_Normal
“ iz Nomal

i Insolvency

Implementation_Insolvency

Figure 2. Navigation Tool in Current States Mode

e Mode «Current States». This mode builds the
navigation tree on the basis of Current State Memory
content (Fig. 2). That’s why only current states
objects can be navigated directly. All the rest model
objects are not available in this mode. Mode
«Current State» is a default mode. Force change to
this mode can be performed by module
CurrentMode;

e Mode «Full Model». Unlike the previous one this
mode provides for user the whole hierarchy of model
objects. Current states are just specially displayed in
context of whole model. Mode «Full Model» can be
performed by loading module named FullTreeMode.

o Mode «Prehistory». Current State Memory contains
not only information about all current situations of
dynamic XML document, but also data about
previous iterations. So, in Current State Memory
each situation can be characterized by its source (the
jump or pass activated this state), previous state, etc.
This data is available for user in Prehistory mode. In
this mode the appropriate module creates
hierarchical structure which shows the hierarchy of
Current State Memory objects. Move to Prehistory
mode is performed by module named
CreatePrehistory.

Any user made iteration can be canceled. This task is
performed by module named Rollback. Rollback function
removes from the Current State Memory the situation
which has become current after performing the last

iteration. In result previous situation (according to the
Current State Memory content) becomes current.

Edit Module

As dynamic XML document is correct XML document,
it’s editing can be made with using standard XML-
editors, such as Notepad, Microsoft XML Notepad, etc.
But all this tools do not provide verification mechanism
and do not into consideration inbuilt dynamic model.

That’s why it was necessary to develop a tool oriented
not just for XML document, but especially for XML
document with inbuilt dynamic model.

In paper [!1] it was suggested to use hierarchical
situational models for inbuilt model development. Four
main types of elements were defined in structure of
dynamic XML document model. They are model,
submodel, state and jump. Each of these elements has its
own complicated structure.

All that elements have their own specific features of
editing. These features were developed in appropriate
Edit Module of Processing Tool for dynamic XML
documents. Performing this module moves user interface
to model editing mode. In this mode the list of available
edit actions for the selected object is generating.

For example, for object type Submode! the following edit
operations are available (Fig. 3):

o Add New Submodel. As inbuilt dynamic model of
dynamic XML document is asynchronous the order

Workshop on Computer Science and Information Technologies CSIT 2007, Ufa, Russia, 2007

14

of submodels has a meaning. Performing described
operation allows adding new submodel to the

position previous to the selected one.

| = 3@ Solvency and Bankruptcy
= Salvency
C ez MNomal
= Prebankruptcy
£ Bankruptcy
: E;a Liquidatici

-

1
¥

BB

. ¥

{E'_i el PRI e e
* & No Add new submodel
F {21 Ye Delete 'Delinquency’

=i Audits Rename

e

I S i Y

Mew start state
MNew state

e A A i G it

Figure 3. Edit Mode. Edit Functions for Submodel

e Up (Down). These two operations allow user to
change the current position of selected submodel
node within either the whole model or the parent
state,

* Add New State. This function allows adding new
state into the selected submodel. As the model is
asynchronous the order of submodel’s states doesn’t
matter. The state becomes current as a result of
performing appropriate jump (pass). The exclusion is
Start State which becomes current automatically
after submodel activation. That’s why operation of
submodel state creation is available in two variants:

e New Start State;
e New State,

* Rename. Performing this operation changes the name
of selected submodel that is attribute name value of
appropriate dynamic XML document tag.

® Delete. This operation allows user to delete selected
submodel from the inbuilt dynamic model. Besides
all child states of selected submodel will be deleted
too.

All changes made in model in Edit Mode are reflected in
the source file with dynamic XML document. Among
other edit operation there is an operation of creating
dynamic XML document. Besides there was developed a
mechanism which allows save any changes on any edit
step into file different from the source,

Pracessing Tool for Dynamic XML Documents

76

Any model changing operation is followed by the
performing functions of Ferification Module. For that
reason there was developed XSD-schema [4] which
defines the structure of dynamic XML document
according to the conception described in paper [1].
Verification Module checks the structure of dynamic
XML document for conformity with that schema,

Text Edit Module

According to the conception of dynamic XML
documents each state of inbuilt model has some
associated object, text for example. In the developed
Processing Tool these objects are stored in dynamic
XML document in WordML format. Choosing a state
loads Text Edit Module with appropriate WordML-
fragment associated with selected situation as input
parameter.

Text Edit Module provides the ability to add new and to
change existing WordML-fragments. This module
engines textual processor Microsoft Word 2003 which
supports functions for processing documents in WordML
format. The special feature of that module performing is
that the textual processor starts not in separate window,
but inside the main window (or form) of Processing Tool
interface (Fig. 4).

All changes made in fragment including text formatting
operations, objects inserting, etc, are rewrite into the
source file with dynamic XML document in WordML
format.

5. Conclusion * Dynamic XML document is document in XML

format with inbuilt dynamic model.

e Popularity of XML technologies makes it actual to
apply this technology to conception of dynamic
documents.

EEx]

PSS et S st ear

Yiew

o @_ 4 I ks ‘5 ®aiin [paska Bua Bcrgeke @opmat Cepsuc Tabnvua
PN | i Word2TeX Owro Cripaska 2
| e W3 dlgaVa) o jm Qe - #
4 No_Yes i Times New Roman 2 K|S S| g{;-:;_»_,;%
@ Yes - PR
: Adlts H Bee anemenTel o Eesann, g
Implementation_Normal | Fiscal Recovery is the bankruptcy procedure which is
1 & Nomal 1 implemented to the debtor according to the schedule of
: Implementation_Insolvency : delinquency extinction.

{21 Insolvency

. (establishers), or by the debtor’s property owner — unitary
enterprise, 15 adopted by assembly of creditors.

I
i Fiscal Recovery plan, prepared by the debtor participants
1

analyses and the conclusion of the administrative =4
government can make a decision about the petition to the =]
court: ;

aboui the introduction of the external control ..

i

1

4

The assembiy of creditors on the basis of debior’s report &]
i

Figure 4. Displaying Associated WordML Fragments of the Selected Situation

To provide the user work with dynamic XML
decuments there was developed Processing Tool. It
performs such functions as navigation in inbuilt
model, edit, creation of dynamic XML document,
processing text and other objects associated with
model situations. Each stage of processing dynamic
XML document is followed by the operations of
verification that is check of agreement of tested file
to the conception of dynamic XML documents.

References
1. Mironov,

V.V. Dynamic XML Documents:
Conception of Development and Application in
Juridical Area // V. V. Mironov, G. R. Shakirova //

Proceedings of the Workshop on Computer Science
and Information Technologies (CSIT’2006),
Karlsruhe, Germany, September 28-29, 2006. Vol. 1,
P. 68-72

. Mironov, V.V. Dynamic Electronic Documents /

V. V. Mironov, T. A. Garifullin // USATU Bulletin.
2004. No 1 (9). P. 185-189 (In Russian).

. Mironov, V.V, Interpretation of XML Documents

with Inbuilt Dynamic Model / V. V. Mironov,
G. R. Shakirova // USATU Bulletin. 2007. No 2 (20).
P. 88-97 (In Russian).

. XML Specification. http://www.w3.org/TR/REC-xml.

[electronic source]

Workshop on Computer Science and Information Technologies CSIT"2007, Ufa, Russia, 2007

77

