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Abstract'

It is supposed, that gas turbine engine as the
nonlinear plant of control on the éstablished
operating modes is described by means of the
aspect equations (1). In practice the problem of
indirect measurements is actual: on observations of
an thermogas dynamic drive parametres output
vector to define values of its operating actions (i.e.
components of vector U).

1. Introduction

For example, on the measured values of parametres 1,
* *

My T4, P2 etc. it is required to calculate value of the

fuel consumption Gr in the combustion chamber.

Analytical statement of problem is reduced to definition
; ’ o -1,
of inverse nonlinear association /  in formula (1)

u=f1(4,7) 1)

Problem solving technique with use of a neural network
we shall see below. Thus it is required to define structure
and parametres of the NN ensuring a minimum error of
training E on basis of procedure, presented on figure 1.
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Fig. 1. Solution scheme of gas turbine inverse
multimode model
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After training neural network reproduces performances
of gas turbine inverse model.

2. Input data preparation

As input data we will consider test result, received in the
course of verification nature test at motor stand UMPO.
These data are in table 1, with regard to usual
atmospheric conditions. The fragment of a training
selection for gas turbine multimode model is shown in
table 1. Full training selection contains 109 lines.

Table 1. Fragment of training selection for multimode
gas turbine model identification

Gtr|mnlr|m2r|Gvr|P2r |T4dr |Rr | T2 | T3x
0,193 | 0,538 | 0,736 | 0,418 | 0328 | 0,518 | 0,153 | 0445 | 0,573
0,131 | 0348 | 0,549 | 0,252 | 0205 | 0476 | 0,056 | 0,254 | 0,612
0203 | 0548 | 0742 | 0427 | 0336 | 0524 | 0,161 | 0451 | 0,578
0,480 | 0,798 | 0,879 | 0,757 | 0,643 | 0,758 | 0,500 | 0,809 | 0,763
0150 | 0,408 | 0,617 | 0,304 | 0,243 | 0468 | 0,085 | 0299 | 0,575
0353 | 0712 | 0,837 | 0,619 | 0,505 | 0671 | 0,336 | 0,668 | 0,694
Here in relative (dimensionless) units following

parametres are equated:

G - the reduced fuel consumption;

ny.,- reduced rotor speed of low-pressure compressor;
., - reduced rotor speed of high-pressure compressor;
G,., - reduced air consumption;

P, - reduced air pressure behind the compressor;

T,, - reduced outgassing temperature on an turbine
output;

R, - reduced engine thrust;
T, , - reduced air temperature on an compressor output;
T, - reduced gas temperature on an turbine input.

One of the basic problems solved at stage of data

_ analysis, the estimation of selection representativeness,
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i.e. completeness of its representation. The solution of the
current problem is realized by one of the cluster or
discriminant analysis methods.

Measurement of metric distance in the course of selection
clustering, received in bench test process.
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Fig. 2. Clusterization result of an original
experimental selection (I ... VIII - classes)

Change of metric distance in the learning sample
clusterization process.
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Fig. 3. Learning selection clusterization result

Change of metric distance in the test

clusterization process.
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Fig. 4. Test selection clusterization result

The analysis of a figure 2 shows, that in clusterization
process, using Statistica 8.0 software, eight classes have
been selected. After randomization procedure learning
and test selections (in the ratio 2:1, i.e. 67 % and 33 %)
have been selected. Clusterization process of training
(figure 3) and test (figure 4) selections shows, that they
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the same, and also like original selection (table 1),
contain eight classes. Distance between clusters
practically coincide in each of the considered selections.
Therefore, learning and test selections are representative.

3. Preprocessing

The important question that is being considered during
the prior elaboration of the measured data is the valuation
of the homogeneity of the training and test samples. For
this purpose we will take advantage of Fisher Snedekor's

criterion [10, 11] for values of frequency rotations ﬂlr ;

received thus outcomes are reduced in table 2. Table 2

analysis shows, that the ratio of © max to © min gives

to variance count 1.28, which less than the critical value
F taken from the standard table of Fisher — Snedekor. In
our case, F'=3,44. Hence, samples are homogeneous.

Table 2. The estimation of a homogeneity training
and test selections with use of Fisher - Snedekor's
criterion (on an low pressure compressor rotation
frequency data example - n,)

Statistical n n
= 1 T 1 r
estimate .
(training sample) | (test sample)
Average 0,6214 0,6731
Dispersion 0,04819 0,06168
Greater to lesser
= : ; 1,28
dispersion ratio
F — critical point 3.44

The completion phase of statistical handling is rationing
of data which can be perform by formula (1). Let's
consider as an example the following problem. Values of
the following gas turbine parametres normalized to
standard atmospheric conditions (table 1) are known. It is
required to construct multimode neural network
mathematical model for calculation (indirect
measurement) magnitudes of the reduced fuel

consumption &,
T

The analysis of input datas (training sample) and process
of their prehandling is carried out similarly to how it
became in a previous problem.

4. Neural network construction

In the course of experimental researches as the basic
architecture of NN, for a solution of the current problem
were investigated perceptron and RBF. The architecture
of RBF neural network for gas turbine inverse multimode
model identification problem is shown in figure 5.



Fig. 5. Gas turbine inverse multimode model
on the RBF neural network basis

Experimental researches for choice optimum structures of
RBF and perceptron neural networks have shown, that
optimum on NN complexity should have accordingly 12
and 16 ncurons in the latent layer (Figure 6) and
(Figure 7).

NN RBF error dependance from an
amount of neurons in a radial layer
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Fig. 6. Diagram of NN RBF error dependence
from an amount of neurons in a radial layer

NN perceptron error dependance from an
t of neurons in hidden layer
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Fig. 7. Diagram of NN perceptron error dependence
from.an amount of neurons in a hidden layer

Therefore, on complexity structure of RBF NN for a gas
turbine multimode model identification problem solve the
structure 8 - 12 - 1 is optimum; and for perceptron -
structure 8 - 16 - 1.

Activation functions are sigmoid.
Were used neural network training algorithms:

e For RBF NN - back propogation [8]; -

e  For perceptron NN - levenberg-marquardt [8]:

e+ =)~ - 00) 1) - - )

where w - a vector of adjusted NN weights;
J — Jacobian matrix;

N — Hessian matrix;

T — transposition sign;

M _scalar parameter;

I — unit matrix.

5. Comparative analysis

The comparative analysis of NN accuracy (PTR, RBF)
and classical least-squares procedure (LSP) methods of
gas turbine multimodel inverse identification on test
sample (figure 8) and on the same sample in the
conditions of an additive making parasite (white noise
with zero expectation of M = 0 and ¢ = 0,01), (figure 9)
is carried out. Curves in figures (8, 9) correspond to
errors of an evaluation of the reduced fuel consumption
(D_Gy) for two classes of NN models (perceptron and
RBF), and also for polynomial regressive model of 8th
degree received by least-squares procedure.
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Fig. 8. Research results of neural and classical
methods of gas turbine multimode model
identification
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Fig. 9. Research results of neural and classical
methods of gas turbine multimode model
identification (with white noise)
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Table 3. The comparative of neural and classical
methods of gas turbine inverse moltimode model
identification (indirect measurement of the fuel
consumption)

Mean | Absolute | Mean
; Absolute
Identi- | square error square i
; ; error (with
fication | error (without error rise]
method | (without | noise) (with (%)
noise) (%) noise) )
LSP 0,06 0,51 1,40 L75
Bereep |\ oo | 0.3 004 | 061
tron
RBF 0,05 0,28 0,06 0,76

Analysis of results shows, that in the best performances
possesses perceptron NN which allows to spend indirect
measurements of the fuel consumption in a wide range of
gas turbine running (from a "Small gas” mode to
"Forcing" mode):

e without noise presence - with an error no more than
0,13 %;

e with noise presence (
more than 0,61 %.

= 0,01) - with an error no

Application of least-squares procedure in these

conditions allows to receive an error value:
e without noise presence - no more than 0,51 %;
e  with noise presence - no more than 1,75 %.

Therefore, at indirect evaluations of gas turbine
multimode model, neural networks more robust to
perturbations of input data than classical methods, which
in the conditions of noise give the big evaluation error of
an aviation engine parameters evaluation.
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