Developing web information systems on the basis
of domain ontology

P.A. Shapkin
Department of cybernetics
Moscow engineering physics institute (National research nuclear university)
Moscow, Russia
e-mail: psnet@yandex.ru

Abstract'
This article describes the of development web-
oriented information systems on the basis of
domain ontologies. Methods of representing and
processing ontologies are considered.

1. Introduction

The development of information systems is a complicated
task that requires a number of skills in different domains:
the design of databases, programming of business logic,
user interface implementation etc. The complexity rises
even more if one considers the development of web-
oriented information systems. It is caused by the usc of
different languages and development tools on different
levels. Furthermore, many levels of web-application are
functioning in separate, loosely coupled environments.

Common technique that helps to case the development is
to use standard software frameworks. Today the number
of web frameworks constantly grows. It means that the
industry needs more powerful tools than those that are
presented by existing frameworks. In spite of using
software frameworks the development of similar systems
often requires repeated coding of similar functionalities.
Repeated coding is often required even during the
development of onc system, e.g. when homogeneous
objects are managed.

One of the main parts of information system is domain
model. In case of object-oriented systems it contains the
definitions of classes of objects. This paper proposes to
use extended domain models represented in the form of
domain ontologies as a foundation to define the
functionalities of information systems.

The article is organized as follows: section 2 introduces
the formalism of ontologies; section 3 discusses methods
of developing ontology-based web-oriented information
systems; section 4 concludes the paper.

Proceedings of the 11" international workshop on
computer science and information technologies
CSIT’2009, Crete, Greece, 2009

Developing web information systems on the basis of domain ontology

120

2. Description logics as a formalism
for representing ontologies

Description logics [1] are a family of formal languages
that are able to express notions of classes, subclasses and
their propertics. They have formal semantics which is
based on the first order logic. Strictly speaking, they
correspond to a restricted variant of first order logic
which is decidable, unlike the first order logic by itself,
The main building blocks in description logics are atomic
concepts (unary predicates), which correspond to classes,
atomic roles (binary predicates), which correspond to
properties or relations, and individuals (constants), which
correspond to instances. More complicated concepts and
roles are built from simpler ones using concept and role
constructors. Concept constructors include such
operations as intersection of concepts, negation, role
range restrictions and so on, They allow to define
concepts in a manner close to the definitions of classes in
object-oriented programming: using relations to other
classes and enumerating properties (roles) that
correspond to the instances of a given class. There are
many variations of description logics, which include
different sets of constructors. Some of them are more
expressive, but also more complex and vice versa.

Description logics introduce several improvements in
simple object-oriented models. We will show it on an
example. Assume that there is a class Woman, and two
roles: hasChild and hasFemaleRelative. The intersection
role

hasChild N hasFemaleRelative

represents the role “has daughter”, ie. if we write
a.hasDauther(b) we assume that b is simultaneously a
child and a female relative of a. Now we can define the
concept “woman having at most two daughters” in the
following way:

Woman N <2 (hasChild N hasFemaleRelative)

Thus, in description logics we can define some classes
using other classes; classes and roles can have a name or
they can be anonymous, like the role “has daughter”,
which is used to define a new concept but is not
explicitly denoted as a separate role.

Another advantage of description logics is that it allows
computing new classes or roles which are not explicitly
defined in the initial ontology. The main form of
inference in description logics are subsumption and proof
of satisfiability of a given concept.

Determining subsumption is the problem of checking
whether one concept is considered more general than
another. In other words, subsumption checks whether the
first concept always denotes a subset of the set denoted
by the second one. For example, one might be interested
in knowing whether Woman < Mother (i.e. Woman

subsumes Mother).

The problem of satisfiability is the problem of checking
whether a concept expression does not necessarily denote
the empty concept. In fact, concept satisfiability is a
special case of subsumption, with the subsumer being the
empty concept, meaning that a concept is not satisfiable.

It is remarkable that properties are separated from
classes. An individual can have arbitrary set of
properties. On the basis of these properties the reasoner
can infer a class to which this individual belongs.

In the development of web applications the ontologies
can be used on different levels:

e as a domain model;

e as a taxonomy of concepts used to describe the
representation of data;

e as a description of services provided by the
application;

e as a description of actions and controllers or the
structure of pages in the application, and etc.

All of the data objects in the application can be
represented as individuals. These individuals could be
described in terms of ontologies defined for the
application. Relying on these descriptions the application
can decide which operations an object supports, how to
represent this object to a user etc.

Ontologies can help to integrate different systems and to
use existing standard components more. E.g. the
developer of a new application can use standard
ontologies to describe the domain of the application. This
description will be based on concepts and roles denoted
in standard ontologies, and there is a chance that the
developer can later use standard libraries which make use
of those ontologies.

Even if the developer constructs a new ontology for the
application, the distributed nature of ontology
representation languages enables to bind it fo existing
ontologies afterwards. If an object is defined in terms of
an ad hoc ontology, its definition in terms of more
general ontologies can be computed using inference
procedures provided that relationships between those
ontologies are defined.

3. Formal representation of an information
system based on domain ontology

In this section we will give the formal model for a
domain ontology based information system. Introduction
of such a formal representation enables to build formal
methods that are used to implement different functions of
information system. The model is based on functional
(applicative) style [2].

3.1. General model of an information system

We will consider an information system (IS) based on
REST [3] and MVC [4] architectures.

According to the REST (Representational State Transfer)
architecture each user request contains information about
the resource it is addressed to, about the action that has to
be executed, about the required response format and a
number of additional parameters.

The Model-View-Controller (MVC) approach implies
division of the whole application structure into three
main parts: domain model, a set of views and a set of
controllers. Model incorporates the definitions of
structures needed to represent domain objects and
implements required business logic. Controller is a
component that is processing users’ requests and
executes required operations. Usually each controller
contains definitions of some actions, which are
commands that this controller supports. Different actions
require different sets of parameters to be included in the
request obtained from an external user. The interface of
the system is defined by views. Views are responsible for
rendering the results of executing controllers’ actions.
The results of that rendering are transmitted to the user as
a responsc to his request. Usually views are bound to
controllers’ actions. The same action can have a number
of views, which can have different formats. Thus, same
actions can be invoked by different external agents, who
require different response format, e.g. a trading system
can supply the list of products both in a human-readable
format such as HTML and in a format aimed at
programmatic interpretation such as XML [5], RDF [6],
JSON, etc.

The MVC approach enables to structure the application
and break it to reusable parts. Nevertheless repeated
coding is sometimes needed. E.g. in many cases the
application contains many similar controllers because
they implement homogeneous actions on similar objects.
Different views can also have similar structures.
Sometimes large part of views and controller actions can
be generated automatically, but it requires extending the
domain model by including additional metadata.

In the case of otology-based IS domain ontology can act
as a model in MVC architecture. We will suppose that
data is stored in a database, which we will define as a set
of different data sources: RDBMS, external data services,
etc. The main tasks of the information system are as
follows:

Workshop on computer science and information technologies CSIT*2009, Crete, Greece, 2009

121

e receive read/write requests from external users;
e getrequired data from the database;

e cxecute required data update operations;

e send results to the user in required format.

The operations that are executed by IS can be divided
into two parts: database operations and generation of the
response from the result of database operations.

Considered IS can be described by a tuple
<O RAF WYVd>,

where O denotes the domain ontology; R is a set of REST
resources in the IS; 4 is a set of actions supported by the
IS; F is a set of supported response formats; ' is a set of
database operations; F is a set of views; d : request —
string is a function that represents a universal controller.

Let analyze some the parts of this model in detail.
Domain ontology is a formal definition of domain
concepts and their properties. It contains definitions of
concepts used to describe objects of the domain; it also
contains metadata about domain objects, i.e. which of
them are used as REST resources, etc. We will consider
description logics as the representation of the ontology.

Database operations are used to execute a database query
associated with a particular action on a particular
resource. Such a construction can be described by a triple

(concept, action, operation),

where concept is a description logics expression of the
associated concept, action is the associated action,
operation is a function of type R — R, that executes
required database operations and returns the result.

Views are used to generate the response of the IS. Each
view is associated with a concept, an action and format.
Views can be represented by the following tuple

(concept, action, format, render),

where concept is a description logics expression of the
associated concept, action and format are the associated
action and format, render is a function of type R — TOut,
that renders its argument resource using the desired
format. Tout is the type of output objects for the view.

Universal controller d is the only controller used in the
IS. When the system receives a request controller has to
exccute the following operations:

e parse the request to extract the addressed resource,
desired action, response format and additional
parameters;

e choose and exccute a database operation that
matches the requested resource and action;

* render the results of the database operation using a
view that matches the resource contained in the
results.

Developing web information systems on the basis of domain ontology

122

This algorithm is illustrated by fig. 1.

{failure]

Parse request

[success)

Gxecute database eperaticn9

Visualize the result
-@®

Fig. 1. Request processing algorithm

(tmoterr)
Report error

Request parsing is done by the function
analyzeRequest :
Request — Option (R x A x F).

Its argument is the request received from the user. The
result of this function is either a triple of type (R x A x
F), which represents parsed request or a failure. To
formalize this behaviour we use a parameterized monadic
type Option(T). If the parsing was completed successfully
it returns an object Some(R, 4, F), in the case of failure
an object None will be returned.

If Nome is returned as a result of request parsing, the
controller stops request processing and returns an error
report as a response to the user. If request parsing was
successful its results its results are passed to the function

execule : (R x A) — (Option (R) x A % F),
it is responsible for executing matching database

operations.

The result of the execution of database operations are
passed to the function

render : (Option (R) x A x F) — String,

which renders the results using the appropriate view and
converts it into string that is returned in the response
body to the user.

3.2. Method for processing semantic
information

Execution of database operations and rendering system
response is based on the same principle. Views and
database operations are examples of templates. They are
used by a template system that processes semantic

information (i.e. RDF graphs) similar to the case of using
XSLT to process XML data. When XSLT is used only to
transform the data onto a different representation, we
propose to use the same approach for general processing
of RDF graphs. If the functions that are used in
templates, besides the generation of an output have side
effects, this approach can be used, e.g. for executing
database operations.

A template system consists of a set of templates and a
function that applies the system to an abject. This
function chooses an appropriate template and executes it.
Thus, a template system that processes values of type Tin
and produces results of type TOut can be defined as a
tuple

<Ts,e>,

where 7 is a set of templates and e is a function of type
TIn — TOut.

The generic template has two major components: an
expression that defines class of objects this template can
be applied to (match-expression) and a function that is
evaluated when the template is applied to an object.

In the case of processing an RDF-graph the input
parameter for the application function has to be an
identifier of a resource in this graph. The match-
expression of the templates contains a definition of
concept. If the input resource belongs to a concept
defined in the match-expression of a template, this
template is applied.

In the considered system templates have also an
additional parameter “action”. It is similar to “mode”
parameter in XSL templates. Using different actions
enables us to execute different operations for the same
concepts.

Considered approach enables to use OOP methods to
process semantic information such as RDF graphs
equipped with ontology. When ontology concepts
represent classes of objects, each template corresponds to
a method of a class. The class (i.e. concept) to which a
particular method (i.e. template) belongs is determined by
the match-expression of that template. Thus, we assume
that the proposed method is a universal tool for
processing RDF data and can be used to involve

ontologies into the
programming,

object-oriented approach to

4. Conclusion

This article introduced an approach to the development of
web-oriented information systems based on domain
ontologies. The approach enables to reduce repeated
coding and gives control over the system by the means of
domain metadata.

These ideas are implemented in a prototype information
system with a simple ontology and user interface. The
prototype is implemented on Java platform in the object-
oriented functional language Scala. The implementation
1s in its initial state and many possibilities are not realized
yet. Currently the system is designed to use RDF files as
the data source.

Future work includes the realization of an internal
ontology reasoner and testing the productivity of the
system on different ontologies and different data stores.

References

1. Baader F., Calvanese D., McGuinness D.L., Nardi D.,
Patel-Schneider P.F. “The Description Logic
Handbook: Theory, Implementation, and
Applications”. Cambridge University Press, 2003.

2. Wolfengagen V.E. “Combinatory logic in
programming. Computations with objects through
examples and exercises”. 2-nd ed. Center JurlnfoR,
Moscow, 2003,

3. Fielding R.T. “Representational state transfer
(REST)”. Architectural Styles and the Design of
Network-based Software Architectures. University of
California, Irvine, 2000.

4. Gamma E., Helm R., Johnson R., Vlissides J. “Design
patterns: elements of reusable object-oriented
software”. Addison-Wesley Reading, MA, 1995.

5. Bean J. “XML for Data Architects: Designing for
Reuse and Integration”. Morgan Kaufmann, San
Francisco, 2003.

6. RDF Vocabulary Description Language 1.0: RDF
Schema, from http://www.w3.0rg/TR/2004/REC-rdf-
schema-20040210/

Workshop on computer science and information technologies CSIT*2009, Crete, Greece, 2009

123

