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Abstract!
The asymmetric financial and actuarial risk
measures based on Wang’s distortion risk measures,
which reflect distinct risk perceptions in the cases
of profits and losses, are defined and studied. This
difference in terms of risk attitude was established
in Kahneman and Tversky's prospect theory.
Asymmetric variants of some other risk measures
such as Pedersen-Satchell measure, Orlich measure,
spectral measure are defined. New risk measures
based on Value-at-Risk and Conditional Value-at-
Risk wich take into account the weights as left or
right tails of profit distribution are defined too. The
described measures are applied in portfolio
optimization. The results of numerical experiments
for these measures are described.

1. Introduction

The existing variety of approaches for financial risk
estimation reflects both: the complexity of a market and
the diversity of psychological risk perception. In
particular, Kahneman and Tversky's prospect theory [1]
experimentally shows that the attitudes to the gains and
losses being equal in the absolute values have not only
«unlike signs». In particular, there are a negligible
number of people, wishing to participate in a lottery
where equal profit and loss have the same probabilities.
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The reactions on the financial markets are similar: failure
stimulates activity of a company, which can lead to a big
success in future. At the same time, success can weaken
the successful companies. Applicability of the similar risk
measures was mentioned by a number of authors (for
example, in [2]).

For an application of asymmetric risk measures such
stock return rate should be used that have a set of values
symmetric relative to zero. Zero corresponds to a case of
stock price stability. The rates of returns such as

£ o0
X(n)=lnh—= or y,=—"—2=
¢ Cn+l * Cn

n

can be used. Here,

¢, is a stock price at day n. The value areas of these rates
are (—oo0,00) and [-1, 1), respectively. It is important to
note, that both rates are dimensionless. These
characteristics, for example, wouldn’t allow using similar
approaches in the actuarial calculations where risk
measure is associated with insurance premium, ie. a
dimensional value. Some of the known risk measures’
constructions can be adapted to an asymmetric case. Note
that often risk measures are defined not for profits, but for
losses.

2. The risk measures application to optimal
investment portfolio forming
We consider the set of stocks (n kinds), of which the

investor forms the portfolio U = (uy, ..., u,) where u;is a
share of the means spent on the i-th kind of stocks, i.e.



u>0, Zuj =1. Let T be the time interval (long enough)
i=1

for which is observed stock price, T be a time interval
(short), following interval 7. Let us choose some family
W, {(U) of measures of the risk, depending on vector
parameter reR and a portfolio U, W*,(U) is the risk
measure which is calculated for historical samples of
portfolio profitability for the period 7 and @ (U) is the

profitability of a portfolio for an interval t . For
developing the most effective risk measures the following
two optimizing problems must be solved consistently:

Uy (r) = argmin, ¥", , (U) , (1

F(T,7) = argmax, . (@, (U, (r))). 2)
It is expedient to select the set
R(T,0)={reR:p,(Us(r)>ar'(T,0)},

where the number o is close to 1 (for example 0,95;
0,99). If this technique gives close sets for the various
markets then it is possible to recommend the
corresponding risk measures for using it for portfolio
forming. If the risk measure ¥, {U) has the minimum
value, one can predict high enough income on the
subsequent short time interval.

For the using of this technique the investor must:

e to choose time intervals 7 and . (it can be a rupture
between them, it is possible to use a technique of a
moving average);

e to establish area of change the set R of risk measure
parameters;

e to choose an optimization method in the problem (1).
If number of stocks n is small (2-10), we applied
exhaustion with step 0,1; for the big number of
stocks the combination of stochastic optimization
with some algorithm of descent was used,

e to choose similarly an optimization method in the
problem (2).

3. Complex quantile risk measures

3.1. Definitions

VaR,, [X] is a distribution quantile of X with parameter a.
o usually takes values 0,1; 0,05; 0,01 which are the
probabilifies of the events “X is smaller than VaR, [X]”.
CVaR, [X] is a conditional mean of X if X is lower than
or equal to VaR,[X]. Different from VaR, [X],
CVaR, [X] is a coherent risk measure [4]. Both measures
take into consideration only the weight of the left tail. For
example, let the random value X be uniformly distributed
on the set [1,1] and the random value Y - uniformly
distributed on the set [1,0]U[9,10]. Then VaRy,s[X]=
=VaRys[Y]=0,5 and CVaRgs[X]=CVaR,,s[Y]= 0,75
but financial results are very different (the idea of this

example is taken from [5]). At the same time

VaR, 5[ X]=0,5; VaRy75[ ¥]=9,5.

Thus it is reasonable to consider the weight of the right
tail, i.e. to include values VaR, [X] — (1—c)-quantile of
the distribution X and CVaR,,'[X] — conditional mean of

X if X is more than or equal to VaR, [X]. Therefore it
makes sense to use the following constructions as risk
measures:

VaRgp: [X]= k-VaR, [X]+ VaRg[X], (3)
CVaR,, s, ‘[X]= &-CVaR, [X]+ CVaRy [X]. 4)
Both risk measures (3), (4) depend on three numerical
parameters.
3.2. Empirical results
We analyzed a few sets of stocks for different 7" and . It
was established that:

e results are better for risk measure (4) then for risk
measure (3);

e for a=p=0,05 the best results have been achieved if
ke(0,4;0,8) (risk measure (3)) and if ke(0,8;1,2)
(risk measure (4)).

4. Asymmetric distortion risk measures

4.1. Definitions

Distortion risk measures were introduced to estimate
actuarial risks [6]. These measures are based on a
Choquet integral construction. Let us consider the
definition of the asymmetric distortion risk measure

(ADRM) [7]. Let §(t)=(g1 ), 8, (t)) be a pair of non-
decreasing functions g, :[0,1]—[0,1]. We define the

asymmetric distortion risk measure by the following
equation:

0

¥ (0= [[1-&(F o) -

w©

~ [ (Fe ),

. (5)
where F,(f)=1-F,(f) is the additional distribution
function of risk. This risk measure is applicable to both
indicators y, and g, due to properties of the function

F,(¢). Standard distortion risk measures correspond to
the case g(f)=g,(!)=g,(#). It is worth to note, that

quantile risk measures VaR, CVaR are the special cases
of the distortion risk measures when a function g(f) is

appropriately chosen.
4.2. Some properties of ADRM

1. ADRM doesn’t depend on a risk X itself but only on
its underlying distribution.
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2. If g(t)=(t,0), then ¥ (X)=—-E[X] where E is the
mean (it is assumed that the mean exists).

3. ADRM is positive for the guaranteed losses and
negative for the guaranteed returns ( F, (#) =0 if £>0
F,(t) =1 if t<0).

4. ADRM is no additive in the general case.

5. There is an important special case when risks X, ¥ are
comonotonic which always take on the values of the
same signs. Recall that random variables are
comonotonic if the increasing of one involves the
increasing of the other variable. ADRM is additive for
such risks.

6. ADRM is monotonous: if almost surely X<Y, then
Y (X)2¥ (Y). Tt follows from the inequality

F,(t) < F,(¢) validity for any «.

7. ADRM is positively homogenecous: if A>0

then ¥, (AX) = A¥, (X).

8. ADRM is functionally invariant under translations
[8]: the function ¥, (X+a) with a determined
variable a is continuous and non-increasing.

9. Assume that g ()= (1-g,(1-9,1-g,(1 —t)) . Then
Y. (-X)= -¥_.(X).

10. ADRM is not sub — or superadditive even for convex
functions (g, (¢),g,(¢)) . Consequently ADRM is not
coherent.

4.3. Empirical results
There were examined the pairs of functions

20 =(r), 6)
g(:):(l-(l-z)"‘,1_(14)‘). %)

For 7 indexes (ASX200, XAX, BSE_SENTEX, BVSP,
CAC40, CSI1200, FTSE EUROTOP 100), T=364 days (a
year), t=2 days, exhaustion for portfolios with step 0,17
(the total number equals 924), exhaustion for pairs
(k,5)e(0,3]% (0,3] with step 0,2 (the total number is 225).
Optimal (in sense of p. 2) are 51 pairs (k,s) for case (6)
and 45 pairs for case (7).

e For pairs (6) among them k<s in 6 cases, k=s in 2
cases, k>s in 43 cases.

e For pairs (7) among them k<s in 25 cases, k=s in 1
case, k>s in 19 cases.
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5. Other asymmetric risk measures

5.1. Pedersen-Satchell’s asymmetric risk
measure

Pedersen and Satchell [9] defined a broad class of risk
measures, some particular cases of this class are well
known and widely used. It admits asymmetric variant:

6 B s
‘P(X)=[j]t—b|“ -W(Fx(t))dFX(z)} +

a*

&
WMM%Q.

o
-{_ﬂt—b"
0

The parameter p takes values 1 or oo depending on the
return rate. In general case, risk measure depends on six
numerical and two functional parameters,

5.2. Asymmetric Orlich type risk measures

Orlich type risk measures were introduced only for
positive risks [10], in [11] the symmetric variant for
alternating-sign case was proposed. Asymmetric variant
is the following. Let function ®: (—o0,00)—3(—c0,0)
(generalized normalized Jung function) have the
following properties: ®(0)=0, ®(1)=1, ®(-1)=—1, it is
increasing, convex on a positive semiaxis and concave on
a negative. Then a risk measure can be defined by the

equation E| ® " =a €(0,1].. It depends on one
¥(X)

numerical and one functional parameter. Function @ is
odd in standard case.

5.3. Asymmetric spectral risk measures
Spectral risk measures were introduced in [12]. Let us
define its asymmetric analogue. Let @ (u),@ (u) be
non-increasing functions such as ¢@"(0)=¢ (0)=0,
' N=¢ (D=1 and gq,(X)=F,'(u) (in continuous
case) is distribution u-quintile. Let p” = P[X <0]. Then
asymmetric spectral risk measure is determined as

¥(X) = —A[ [or @, (X)du+ I ¢ (u)q, (X )du},

p

i 1
where 4=1/ { J.gp’(u)du+ _[;p”(u)du] is a normalizing
0 p‘
factor.

It is reasonable to apply this measure to y, return rate,

which allows avoiding the problems with convergence of
integral. This risk measure depends on two functional
parameters. The traditional spectral measure complies

with the case @" (u) =@ (u).



6. Conclusion

A few classes of financial risk measures are defined. In
particular some of them take into account the asymmetry
influence (in spirit of Twerski-Kanneman prospect
theory). The procedure of checking risk measure
efficiency for portfolio formation and determination of
the best parameters is described. The results of numerical
experiments are given for some of defined risk measures.
It is shown that the using of defined risk measures leads
to good stocks portfolios.
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