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Abstract!

The d -Dimensional Orthogonal Packing Problem
(OPP-d, d = 2) asks whether all given boxes can
be orthogonally packed into a given container
without rotations. The simplest bound for OPP is
the volume bound: if the total volume of the items
exceeds that of the container then the instance is
infeasible. Conservative scales (CS) are modified
item sizes such that if OPP is feasible, it is also
feasible with the modified sizes. Thus, the volume
bound for the modified instance is valid for the
original instance. Up to now, CS have been
constructed either (i) completely independently in
each dimension using dual-feasible functions or (ii)
by an exact method in the 2D case. Between (i) and
(ii), there are possible heuristic algorithms which
construct d conservative scales (in ¢ dimensions)
simultaneously. Our first efforts in this direction
have shown that a simple LP iteration produces
results nearly identical with the exact method in
smaller time. 3D results are presented as well.

1. Introduction

Let there be given a set of o -dimensional items (boxes)
that need to be packed into a fixed container. The input

data describe the container sizes W, €Z,, k=1,d,

and the sizes of the n items W' €Z , k=1,d for

ieV={1,...,n}. Without loss of
generality, we assume that each item fits into the

each item

container, i.e., wf <W, holds for each box i and

dimension k . The guillotine constraint is not considered.
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(OPP-d ) [9] asks whether all the boxes can be
orthogonally packed into the container without rotations.

OPP is strongly NP -complete and polynomially
equivalent to the orthogonal strip-packing problem [1].
OPP is a subproblem in solution methods for orthogonal
bin-packing and knapsack problems, cf. [9,2].

Many solution methods use bounds on the solution value.
For example, the simplest bound for OPP is the volume
bound:. if the total volume of the items exceeds that of the
container then the instance is infeasible. Bounds are
obtained from relaxations of the main problem, i.e.,
somewhat simpler problems. Bounds should be
preferably quickly computable. However, some bounds
are so strong that it pays off to spend more time for their
computation.

Conservative scales (CS) [10] are modified item sizes
such that if OPP is feasible, it is also feasible with the
modified sizes. Thus, the volume bound for the modified
instance is valid for the original instance. Often it is
stronger, which is heavily used in algorithms.

Definition 1. Let (W, w) € ZxZ" be an instance of the

ID binary knapsack problem. Vector WeR” is a
conservative scale (CS) for (W,w) if any feasible

solution of (W ,w) stays feasible for (W, W) :

| Bas S

Vae{0,1}": Ywa, <W= D Wa, <W. (1)

Proposition 1. Let [ = (Wl,...,Wd,wl,...,wd) be an
instance of OPP-d . Let W* be a CS Jor (Wk,wk),

k=1,d. Then any feasible packing for I can be
transformed into one  for the

I =W,...W,,%,....5%%).

instance



Thus, conservative scales define a new OPP instance
whose set of packings is a superset of that for the original
instance (if it is the same, we obtain a so-called
equivalent instance, cf. [8]). Our goal is to maximize its

volume bound:
21 ¥
i k

s.t.  W'isa conservative scale for(w*, 7, ).

max
()

Up to now, CS have been constructed either (i)
completely independently in each dimension using dual-
Jeasible functions (cf. [6] and Definition 2 below), or (ii)
optimizing problem (2) exactly in the 2D case [4].
Between (i) and (ii), there are possible heuristic
algorithms which construct d conservative scales (in d
dimensions) simultaneously,

2. LP heuristics for conservative scales

In this section we discuss previous results on
conservative scales, introduce the new heuristics and
discuss their properties.

2.1. An overview of conservative scales

Interpretation as valid inequalities.  According to
Definition (1), comsider some constant CS W for

(W,w)e ZxZ" . Now, the inequality
awsw

is a valid inequality for the knapsack polyhedron

P(W,w)=conviae{0,1}" :a"w<W}. (3)
This suggests application of CS in polyhedral theory, cf.
[6].
The CS polyhedron. Given all extreme points
a’ €{0,1}", j=1,n of the knapsack polyhedron (3),
any CS W satisfies the constraints

T

o' w<w, j=1,n, @)

ie.,, all CS for a certain (W,w) are given by the
polyhedron
~ iT~ ST
D(PW,w)={weR?:a’ wsW, j=1,n}.(5

Note that we consider only non-negative CS because this
leads to better numerical results and prevents some
technical difficulties in the methods proposed below.

A linear program. We can maximize a linear objective

function on D(P(W,w)):

max{h"w: weR", a’ W<W, j=1n7} (6)

with some #€R]. The LP (6) can be solved by a
cutting-plane algorithm, cf. [4].
The dual program to (6) is

min{W—Zq:x:iajxj >h,x20}. @)

=1 =1
For any ke{l,...,d} and corresponding data
= k _ no__ k'
W, w)= e w"), h= ()i = (HE#W:' )?=1
this is the & -th bar LP relaxation of OPP, cf. [3].

Thus, any CS W is a feasible dual solution of (7). Dual-
Jeasible functions (DFFs) produce such solutions

heuristically:

Definition 2. 4 function f :[0,11—[0,1] is called
dual-feasible if for any finite set of non-negative real
numbers (X,,...,x,) € RT holds:

> x El= y fin)<1.

Note the difference between CS (Definition 1) and DFF:
the latter are just an instrument to construct the former.
For a certain OPP instance, DFFs are applied
independently in each dimension without considering the
main goal (2).

2.2. Iterated 1D relaxations

Our heuristic should keep the objective (2) in mind. The
idea is to simplify (2) down to a linear program (6) by
fixing the CS in all but one dimension. Let us consider
the 2D case first. Let an OPP-2 instance be defined as

(W,H,wh)eZxZxZ"xZ". For a
h eR",acs for (H,h), we look for the “best" W, a
CS for (W,w). This problem is modeled by (6). To

certain

" []
obtain many different W and /2 (and possibly high

volume bounds (ﬁ‘iﬁf ), we propose the iterative
heuristic described in Figure 1.

Input: 2D OPP instance (W. H, w. k).
50, Setw®=w A% =h andt =0
SI. Sobve the following LPs for both dimensions:

witl ¢ arg umx{h*Tii’ qiw e D{P{W,w))}, (8a
B ;u,gumx{w*-r?:. :h = D{P(H, b,])ln {8hi
82, Compute volume bounds:
if nmx{w”’lT B, u-fThH'l} > WH

then the OFP instance (W, H 2o, k) is infeasible;
else set f — ¢+ 1 and goto S1.

Fig. 1. The iterative heuristic for the 2D case
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In the 2D case it is possible to show some monotonicity
of the bounds, which explains the choice of tested scalar
products in step S2:

Proposition 2. Consider the 2D algorithm of Figure 1. It
holds forany t € Z, :

W > W, e D(P(W,w),

and  A"UwW 2R™W, Vh e D(P(H,h)).

A heuristic for three and more dimensions is given in
Figure 2.

fnput OPP-d instance J = (Wy,... Wy w!, .. wd)
SO. Initialize the set of C5: % = {w¥}, k=T
Select the starting vectors @2 = 0F & =T, d and
sett=1.
S1. Foreach dimension ko = 1, d. initialize the objective
function:
~ — g = n
hko.f — l:\h:*““):;j — ( H EEjﬁE# 1)im!-
k¥ ke

$2. Foreach dimension & =1, d do;
a3 Solve

&t = m‘gmax{?ak'”ﬁ' W e lePl_'W}C?v.r."‘])}
9}
by If 35t = OF (repeated C5)
then replace &5 using DFF «*# [10] with some
p=H N
Add @k o (3%,
§3. Compule the volume bounds from all known CS:
it mae{3, [, & : @* € OF k=T1.d} > [, Wi
then the OPP instance { is infeasible,
Else set f — ¢ + 1 and goto S1.

Fig, 2. The iterative heuristic for three and more
dimensions

This scheme allows many variations. For example, we
can replace steps S1--S2 by the so-called spiral scheme
shown in Figure 3.

$1-82. Foreach dimension ky = T d dex

a) Initialize the ohjctive function kER%* =

(]‘;f“’"‘]:’gl = ( H ket E'f"”ij:_ll
k<tka kaka -
by Solve (W with k = ky.
¢; IF et = (o (repeated CS)
then replace #">* using DFF «'®) [10] with
some p = N,
Add itot o 0%,

Fig. 3. The spiral scheme of the iterative heuristic

This variation possesses monotonicity properties like in
the 2D case (Proposition 2), which leads to faster
convergence. But after a few iterations the results are
rather similar to the algorithm in Figure 2. A very useful

option is to add more CS to ar during initialization.
However, we further discuss only the exact scheme of
Figure 2.
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Step S2 b) should prevent stalling of the heuristic. If CS
in dimension k appears repeatedly, it is replaced by a
new CS obtained with the DFF 2" :[0,11—[0,1]
from [10] which is defined as

= 3 (p+xel,

wP=1L il  (prDrez
p

for any p €N . For non-cubic instances (see Results) we
used a global variable p and increased it by 1 with

every usage (starting at 1). For cubic instances it proved
better to have a separate counter in each dimension. This
can be explained by the following observation:

max{x’,y’,2°} = xyz, Vx,y,z20.

2.3. A local optimality criterion
Consider the following particular volume bound:

e o~k
v =2 T#
i k

It has no practical interest on itself because it is

dominated by the value of the LP (10, Fig. 2) for any k.
However it possesses a local optimality condition:

a2, (11)

Proposition 3. Consider the algorithm of Figure 2. If

W = 5% for some feZ, andall k=1,d, then

(ﬁ}],:

%" is a local maximum of (2).

3. Conclusions

We proposed an iterative heuristic to compute
conservative scales for OPP. The heuristic is based on a
simplification of the original multilinear optimization
problem to a linear one by fixing the CS in all
dimensions but one to constants. In 2D, the results are
much better than from DFFs and the same as from
bilinear programming while using only small time. In 3D,
the results are better than from DFFs, especially for non-
cubic instances.

4. Results

The experiments were performed on modern PCs. We
used CLP 1.6 (www.coin-or.org) as a linear programming
library. All running times are reported in seconds.

4.1. 2D OPP

We considered the 27 infeasible OPP instances form [7].
(In their paper, only 41 instances are cited, but the
complete set has 15 feasible and 27 infeasible instances).
The container size is 20X 20 and the number of items
n=<23. In [7] cach instance was solved in a few
seconds. For the 27 infeasible instances, we compared the



2D heuristic of Figure 1 with the volume bound from
DFFs and with the exact algorithm of [4].

Table 1. The dual-feasible functions tested

id the identity,

u® (k=1,22345%

U< (e = 0.1,0.2,0.3,0.4,0.5) } DFFs from[10],
B (e = 0.1,0.2,0.3.0.4)

FF (k = 50,100, ..., 450)
FF (k= 50,100. ..., 450)

a DFF from [5].
a DDFF [5].

We considered the 33 DFFs given in Table 0. The

volume bound was calculated using all 33® pairs of
DFFs as

n d
> 1g, )

i=1 j=1

kmax b a
. & 48
g elida® U™ " Sy S} l Igj(ml)

J=1

(13)

v=

k ; ;
To compute %", U*, and ¢°, the sizes were scaled so

that W, =1, j=1d.

The code from [4] solved 13 instances, 12 of them rather
quickly and one more (instance 00N23) after 30 seconds.
Note that among the 13 instances are the 10 ones solved
by the bar relaxation (iteration 0 of the heuristic). The
heuristic solved the same 13 instances. The values are
monotonous with a period of two iterations, in
accordance with Proposition 2..

4.2. 3D OPP

For 3D tests we considered instances generated similarly
to [3]. The number of items was n =20 (for other
values of 7, the behavior is similar)) For each
approximate waste percentage 0%, 2%, ..., 40% we
generated 100 instances. The time to compute v(DFF)
was about 1 second per instance, cf. [3].

For the non-cubic instances (side ratio 1:20), the LP[0]
value mostly dominates the bound from DFFs. This
dominance noticeably increases in the subsequent
iterations of the heuristic. For cubic instances, the LP[0]
value is very weak compared to DFFs. The weakness of
LP[0] for cubes can be explained by a greater loss of
geometric information. An interesting question is the
relation of the sets of instances solved by DFFs and the
heuristic. For non-cubic instances, all but 1 instances
solved by DFFs were also solved by the heuristic. For
cubic instances, 99 of them could be solved only by
DFFs. For instances with maximal item side ratio 1:3, the
results are similar to those with 1:20, except that only
837 instances were solved after 10 iterations.

The stalling prevention feature (step S2 (b) in Figure 2)
- proved very effective. Without this feature, we observed
no improvement after 3-5 iterations and considerably

weaker overall results.

Moreover, sometimes we

observed that the objective coefficient vectors ;; o (step
S1) became zero. Interestingly, this always happened for
all k=1,d simultaneously.

automatically resolved this situation.

Stalling  protection
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