Last modified: 2021-01-29

#### Abstract

#### Keywords

#### References

1. Alvarez-Valdes R, Parresno F, Tamarit JM. “Abranchand bound algorithm for the strip packingproblem”. OR Spectrum, 2009; 31(2): 431-459.

2. Baldacci R, Boschetti M.A. “A cutting-planeapproach for the two-dimensional orthogonal non-guillotine cutting problem”. European Journal ofOperational Research, 2007; 183(3): 1136-1149.

3. Belov G, Kartak V, Rohling H, Scheithauer G.“Onedimensional relaxations and LP bounds fororthogonal packing”. Preprint MATH-NM-03-2009,accepted for publication in InternationalTransactions on Operational Research, 2009.

4. Caprara A, Monaci M. “Bidimensional packing bybilinear programming”. Mathematical Programming,2009; 118(1): 75-108.

5. Carlier J, Clautiaux F, Moukrim A. “New reductionprocedures and lower bounds for the two-dimensionalbin packing problem with fixed orientation”.Computers & Operations Research, 2007; 34(8):2223-2250.

6. Clautiaux F, Alves C, de Carvalho J. V. “A survey ofdual-feasible functions for bin-packing problems”.Annals of Operations Research, 2008; to appear.

7. Clautiaux F, Jouglet A, Carlier J, Moukrim A. “Anew constraint programming approach for theorthogonal packing problem”. Computers &Operations Research, 2008; 35(3): 944-959.

8. Dowsland K.A. “The three—dimensional pallet chart:An analysis of the factors affecting the set of feasiblelayouts for a class of two-dimensional packingproblems”. Journal of the Operational ResearchSociety, 1984; 35(10): 895-905.

9. Fekete S.P, Schepers J. “A combinatorialcharacterization of higher-dimensional orthogonalpacking”. Mathematics of Operations Research,2004; 29(2): 353-368.

10. Fekete S.P, Schepers J. “A general framework forbounds for higher-dimensional orthogonal packingproblems”. Mathematical Methods of OperationsResearch, 2004; 60(2): 311-329.