Noise Stable Feed-Forward Neural Networks

A. A. Obeidat
Al-balqa applied university
Al-Hussun university college
Huson, Jordan
e-mail: atefob@hotmail.com

Abstract'

The ability of neural networks to closely
approximate unknown functions to any degree of
desired accuracy has gencrated considerable
demand for neural network research in many fields.
The attractiveness of NN research stems from
researchers' need to approximate models without
having a prior knowledge about the true underlying
function, so NNs are known as universal function
approximator. All algorithms used to train NNs
minimize a mean square error cost function, which
is not robust in the presence of large noise such as
outliers. Robust statistics introduced various
techniques, for estimating the parameters of a
parametric model which dealing with deviations
from idealized assumptions. We will focus in this
paper on one popular robust technique, that is called
M-estimators, to minimize the influence of noise on
the accuracy of training artificial feed-forward
neural networks. We used M-estimators in order to
make NN training more efficient and robust. We
report simulation results to analyze and evaluate the
electiveness of this approach.

1. Introduction

An important, typical problem in mathematic parameter
estimation is to find a model that fits a given set of
training data. To find the best fitting model, it is
necessary to define a merit function that measures the
agreement between the data and the model. Mean squared
error (MSE) is the preferred measure in many data
modeling techniques. Tradition and ease of computation
account for the popularity of (MSE).

Supervised neural networks learning algorithms that use
mean squared error (MSE) cost function make implicit
assumptions such as normality and independence about
the error. These assumptions are at best an approximation
to reality. One challenge to these assumptions is the
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occurrence of gross errors which usually appear as
outliers. It has been noted, however, that the occurrence
of gross errors in routine data ranges from 1% to 10% [8].

Robust statistics have recently emerged as a family of
theories and techniques for estimating the parameters of a
parametric model while dealing with deviations from
idealized assumptions. Examples of deviations include
the contamination of data by gross errors, rounding and
grouping errors, and departure from an assumed sample
distribution. Gross errors or outliers are data severely
deviating from the pattern set by the majority of the data.
This type of error usually occurs due to mistakes in
copying or computation. They can also be due to part of
the data not fitting the same model, as in the case of data
with multiple clusters. Gross errors are often the most
dangerous type of errors. In fact, a single outlier can
completely spoil the least squares estimate, causing it to
break down. Because of this, trying to detect outliers by
thresholding on the residual error will not work.
Throwing away one datum at a time and doing least
squares on the remaining subset also does not work when
more than one outlier is present. To overcome the
possibility of presence of outliers, many robust estimators
are being used recently such as M-estimators (Maximum-
likelihood estimators) [9], W-estimators [11], L-
estimators (Linear combination of order statistics) [12].

Nowadays, onc popular data modeling technique is
artificial neural networks (NN’s), which have found many
applications in all kinds of fields [1]. It is widely known
that feed-forward neural networks are universal
approximators [4], [18]. These networks have emerged
from the continuous efforts to understand and mimic how
the human brain and the nervous system work. Mean
squared error (MSE) is also the preferred measure in
many artificial neural network architectures and learning
algorithms, such as perceptron, back-propagation [2],
quickprop [3] and radial basis function (RBF) net [5].
Robust statistics, however, are not widely known in the
NN community. The objective of this paper is to apply
M-estimators to minimize the influence of gross errors on
the accuracy of NN models. The neural network is thus
hopefully able to identify inliers (good data) from
outlying data such that the correct data model is
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estimated. There have been previous efforts in that regard
[71, [8]. [9], [10], [19]. In this paper we give an extensive
study, in terms of accuracy of two M-estimators as robust
(noise stable) cost functions with two famous neural
network training functions that updates neural networks
weights and bias, Levenberg-Marquardt backpropagation
(TRAINLM), and Conjugate gradient backpropagation
with Fletcher-Reeves updates (TRAINCGF).

2. M-Estimators and its influence functions

M-estimators, is one popular robust technique which
correspond to the maximum likelihood type estimate.
They generalize straightforwardly to multi-parameter

problems [9]. Let #; be the residual of the it datum, i.c.

the difference between the i” observation and its fitted
value. The standard least-squares method tries to

minimize » 7" which is unstable if there are outliers

present in the data. Outlying data give an effect so strong
in the minimization that the parameters thus estimated are
distorted. The M-estimators try to reduce the effect of

outliers by replacing the squared residuals rfz by another
function of the residuals, yielding [15], [20]

min Y p(r,), (D

where p(r,) is a symmetric, positive-definite function

with a unique minimum at zero, and is chosen to be less
increasing than square. Instead of solving directly this
problem, we can implement it as an iterated reweighed
least-squares one. Now let us see how.

Lt P=[pl,..., pm]rbc the parameter vector to be

estimated. The M-estimator of P based on the function
p(.) is the vector P which is the solution of the following

m equations:

E\M(ir})i =0, for j=1,..,.m, 2)
i Ip;
where the derivative W(r,)=dp(r,)/dr, is called the
influence function. If now we define a weight function

v (r,)

o(r,)=—-—= (3)

rl

The equation (2) becomes

ar: .
>o(r)r—=0 for j=1,..,m. 4
i dp;
This is exactly the system of equations that we obtain if
we solve the following itcrated reweighed least-squares
problem

min ¥ o(r,“)r?, (5)
i
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where the subscript (k) indicates the iteration number.

The weight a)(r;.(k_l))should be computed after each

iteration in order to be used in the next iteration.

Table 1. Used M-estimators

e p(r) y(r) w(r)
Least Squares rz /2 F 1
12)
Least Absolute |}"| Sg;n(r) 1_
(L) |r|
Least Mean 1 1
Log Of log( 1+-2~r2) r1 :
Squares(LMLS) 1+ 3 Pt 1+ z rt

The influence function measures the influence of a datum
on the value of the parameter estimate. For example, for
the least-squares with p(x)=x?/2 the influence

function is W(x) = x, that is, the influence of a datum on

the estimate increases linearly with the size of its error,
which confirms the non-robustness of the least-squares
estimate. When an estimator is robust, it may be inferred
that the influence of any single observation (datum) is
insufficient to yield any significant offset [13]. There are
some important constraints that robust M-estimators
should meet, these constraints are: 1 — Is to have a
bounded influence function. 2 - Naturally the
requirement of the robust estimator to be unique. This
implies that the objective function of parameter vector P
to be minimized should have a unique minimum. This
requires that the individual p-function is convex in
variable P. This is necessary because only requiring a p-
function to have a unique minimum is not sufficient. This
is the case with maxima when considering mixture
distribution; the sum of unimodal probability distributions
is very often multimodal. The convexity constraint is

cquivalent to i]ll.p()SiIlg that t)zp ) (” 5 is llon—negative
definite.
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Fig. 1. Graphical representation of used M-estimators.




3 - This is g practical  requirement,
wheneverazp(.)/aP2 is singular, the objective should

have a gradient, i.c. dp(.)/0P #0. This avoids having
to search through the complete parameter space. Table

(1) lists used M-estimators [15] and their influence
functions are graphically illustrated in Fig. 1.

3. Simulation results

In this section, the proper performance of neural networks
trained with the robust (M-estimators) is demonstrated in
several situations. It was tested to approximate the
following function.

x
]
=sinc(x)=1{ sin(m x 6
y=sinc(x)=qsin(mx) o (©)
Tx
We shall compare between robust learning algorithms
based on the minimization of M-estimators-based cost

functions, and a non-robust learning algorithms based on
the minimization of (MSE) cost function.

The neural network architecture considered is a two-layer
feed-forward with ten hidden neurons. A total of 500
training patterns were generated by sampling the
independent variable in the range [-5, 5], and using (6) to
calculate the dependent variable,

We study the training of these neural networks in four
cases:

Case A, pure data without any disturbance, in order to get
other variants beside the most popular MSE cost function.

Case B, Neural networks trained with high-quality data
corrupted with small Gaussian noise: G,~ N (0,0.1).

Cace C, Neural networks trained with data corrupted with
Gaussian noise, G2, in addition to high value random

outliers  of  the form: H~N (+ 15,2),
Hy~N (-20,3) H3~N (+30,1.5),

H,~N (~12,3).

The data perturbation used in this case is as follows:

Data=(1-€%) G, +e%(H, + H, + H, + H,)

The outliers were introduced in the data in several
percentages: case C.1. with € %=0.05; case C.2. with
€ %=0.45.

Case D, Neural networks trained with 51% of the data
corrupted with Gaussian noise G, ~ N (0,0.1); and the

remaining 49% of the data substituted by background
noise, uniformly distributed.

5. Results

To compare the above four performances, it is necessary
to usc only one criteria. Therefore, we used the root mean
square error (RMSE) of each model.

Where the target ¢, is the actual value of the function at

X; and y; is the output of the network given x; as its
input.

Each of four data sets is trained with both MSE and
two M-estimators for 500 epochs, and by using two
different  training  functions (TRAINCGF)  and
(TRAINLM) within MatLab environment. The results
presented below are the average response of trainings.
This was done to take into account the different initial
values of weights and bias at the beginning of each
training. The results are summarized in Table (2), Table

3).

Table 2. RMSE values of networks trained with MSE,
L1, LMLS, cost functions and TRAINCGEF training

function
Trainin RMSE
g MSE L1 LMLS
cases
Case A | 0.006 | 0.026 | 0012
4 3 6
Case B 0.025 0.034 0.025
6 8 6
Case C1 1.049 0.042 0.027
0 0 5
Case C2 3.126 0.060 0.056
6 6 6
Case D 0.405 0.336 0.381
6 4 7

Case A: Simulation results using the first data set are
presented in Table (2). From these results we observe that
the best neural network performance is affected by MSE
cost function with RMSE= 0.0064, followed by LMLS
with RMSE= 0.0126, and L1 with RMSE=0.0265.

Case B: when Gaussian noisc is added to the training
data, the RMSE for both MSE and LMLS are similar=
0.0256, followed by L1 with RMSE=0.0348. Although
the MSE method is optimal theoretically with respect to
Gaussian noise, the LMLS and L1 cost functions
performs equally well.

Case C: In the third experiment, the networks are trained
using Gaussian-noised data set in addition to high value
random outliers at two different percentages. The
tabulated results in Table (2) show that the LMLS and L1
cost functions are superior, and have RMSE vales smaller
than that corresponding with MSE.

Case D: in this case with background noised training data
set, we can note clearly from tabulated RMSE values in
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Table (2) that all networks responses based on three cost
functions yield poor performance.

Again we will repeat the above training cases but this
time using different training function that is called
(TRAINLM), the experiments RMSE values in Table(3).
From tabulated results we can note clearly the bad
performances of the proposed cost functions with this
training function except the most noticed response with
case A (pure training data sct). And some extent good
performances with case B (high-quality data corrupted
with small Gaussian noise).

Table 3. RMSE values of networks trained with MSE,
L1, LMLS, cost functions and TRAINLM training
function on training cases

Trainin RMSE
g MSE L1 LMLS
cases
Case A 6.7558e- 0.003 3.3664¢-
005 7 005

Case B 0.0284 0.032 0.0283
3

Case C1 2.8118 0.451 0.4977
8

Case C2 3.8073 1.414 1.2346
4

Case D 0.5186 0.407 0.4148
0

4. Conclusion

We have introduced noise stable feed-forward neural
networks or in other correct words noise stable
backpropagation learning algorithm that based on robust
cost functions. This robust learning algorithm possesses
important properties such as robustness against large
noise (outliers), casy adaptation to most neural networks
learning algorithms, and high breakdown point. The
future direction of this work is aimed toward improving
the performance of these estimators especially in the case
of data with unstructured background noise, and to test it
in a real industrial process. We strongly recommend for
those using feed-forward neural networks with data
collected from real life systems don’t use MSE as cost
function.
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