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Abstract’
The sufficient conditions are given such that for a
simple combinatory calculus C the relation

(VP)(Y[% = P~ Z[# = P))
implies the syntactic equality
Y=7,
where Y, Z are any terms over the set of variables
Bssznbs F=%,0%,, P=R,..,B,, and B,

..., B, are closed terms,. ~ is the equivalence rela-
tion of terms in the calculus C.

1. The simple combinatory calculi

It is known that the calculus CL (weak theory of combi-
nators) is defined by the axioms

KMN =M and SMNL = ML(NL),

where K u S are the combinators and M, N, L are arbitrary
CL-terms. In the present paper we consider the calculi
like CL. In the following we use the notions and the nota-
tions from [1-3].

Let A be a finite alphabet of constants, V be a set of vari-

ables, W AUV . The set Tm(W) of terms over W is the
smallest set such that:

I W Tm(W);
2. if P,Qe Tm(W) then (PQ)e Tm(W).

In writing terms the outermost parentheses are omitted.
The symbol = denotes syntactic equality of terms. We
write Tm instead of Tm(4UV). M, N, L, ... is a syntactic
notation for arbitrary terms in Tm and x, y, z, ... is a syn-
tactic notation for arbitrary variable in V. The length of a
term M is the number of symbols of 4 UV in M. Unless
otherwise stated a term is a term over the set W = AUV .
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Let N = Ny,..,Nj . Then

MN,..N, = MN = (...((MN,)N,)...),
(association to the left).

FV(P) is the set of variables in P, P is closed if F V(Py=2.
The closed terms are the terms over the set 4. Notation
M (xy,...,x,) means that FV (M) c {xl,...,xn}.

M[x:=N] denotes the result of substituting N for the oc-
currences of x in M. Let X =Xy X NzN;,...,Nk.
Then

M[x,..., X = Ny,..., N, 1= M[% = N]

denotes the result of simultaneous substituting Ny, ...,
Ny for the occurrences of x|, ..., x; respectively in M.
If M =M(xy,....,x;) then we write M(Ny,...,Ny) in-

stead of M[%:= N].
The equality

ax,..x, =X (1)
where ae A, X is a term over the set of variables

{xl,...,xn}, is called a combinatory identity. A constant a

is called a basic combinator with the identity (1). The
number 7 is called the rank of the combinator @ and de-
noted by rk(a).

Let Z be a nonempty set of combinatory identities:

a,%..x, =X,

8.3,

r zX"’

where the basic combinators a; € 4 are distinct, n; >1,
1=i<r. The symbols of 4 which are different from g,
...y a, are called the atoms.

The set X defines the calculus C=C(X). The formulas of

the calculus C are the equations of terms M = N where
M,N € Tm . The calculus C has the following axioms:
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alPl...Pn] =X1(Pl,...,Pn!),
2
a, R, =X,,(Pl,...,Pnr),
where B, ..., P,,I_ are any terms, 1<i<r. The set of
axioms is completed by the formulas
P=P;

where Pe Tm . The rules of the calculus C are as fol-
lows:

M=N M=N N=L

N=M" M=L

M=N M=N
 ML=NL' IM=IN’

We write C | M = N if the formula M = N is proved in
the calculus C.

The calculus C° = C°(E) is obtained from the calculus C
if in formulas, axioms and rules only closed terms are
used. We write C° M =N if the formula M = N is

proved in the calculus C ° (here M and N are the closed
terms).

The calculi C and C° are called the simple combinatory
calculi (SCC). Such calculi are studied in [5-9]. The cal-
culus CL (weak theory of combinators) is combinatory
complete. An arbitrary SCC C may not be combinatory
complete.

Just as in the case of the calculus CL, the axioms (2) de-
fine for the calculus C the reduction relation — on the set
Tm. If P=Q is one of the equations (2) then P is called a
redex (a redex of the calculus C) and Q is called its con-
tractum (the value of the redex P). We write M — N iff a
term N is obtained from a term M by replacing one occur-
rence of a redex in M by its contractum. Transitive reflex-
ive and transitive reflexive symmetric closure of the re-
duction relation — is denoted by —~ and ~ respectively.

Theorem 1. C-M=N&M~N.

Proof. See [1,3]. [0

Theorem 2 (Church—Rosser theorem).
M~Ne @L[M >' LAN =" L]

Proof. See [1,3,4]. O

A term M is in normal form (NF) in the calculus C iff
there is no term N such that M — N.

Corollary. If the terms M and N are in NF in the calculus
Cthen M~NeM=N.0O

A term M has a NF in the calculus C iff there is a term N
such that:

1) Nis in NF in the calculus C;
2)M—"N.

Some Remarks on Simple Combinatory Calculi

152

By the Church—Rosser theorem a term N (if exists) is
unique for a term M. The term N is called the normal
form of the term M.

The sequence (finite or infinite)
P=Pyo>RA—>P—.., (3)

where P, P, arc terms, (20, is called a reduction chain
of P. If the sequence (3) is finite and is finished by £,
n >0, then the number n is called the length of this re-
duction chain.

A term M is in quasi normal form (QNF) in the calculus
At

M EE_,N]...Nk,

where & is an atom or a variable or a basic combinator of
rank tk(E)>k (k= 0). A term M has QNF in the calculus
C iff there is a term N such that:

1. Nisin QNF in the calculus C;
2. M—"N.

Let a term M =aN,...N; where a is a basic combinator.

The term M is h-reduced to a term N in the calculus C,
notation M —j, N, iff for some i<k the term

P=aN,..N; is a redex and N =QN;,;..N, where a

term Q is the contactum of P. We say also that the term N
is obtained from the term M by one A-step. The term P is
called the head redex of the term M. The relation —, is

called a one step head reduction.

The sequence (finite or infinite)
M=M,—>, M, =, M, =, ..

is called the head reduction chain of M. If M, is in QNF

then one say that the head reduction chain of M is fin-
ished by M, . Otherwise one say that M has the infinite
head reduction chain.

Theorem 3. Let a term M has a NF in the calculus C.
Then there is a number m such that any reduction chain of
M has not more than m h-steps.

Proof. See [1-3]. U

Lemma 1. Let a term M =aN,...N; has a NF in the cal-

culus C, @ be a basic combinator. Then for each i
0<i<k,theterm M; =aN;..N; hasa QNF in C.

Proof. By theorem 3 there is a number m such that any
reduction chain of M has not more than m h-steps. Let us
consider the head reduction chain of M;:

M, =M) >, M/ >, .. 4)
Then

M=MN,,.N, =, M{N,,,.N, =, ... (5



If the chain (4) is infinite then the chain (5) is also infinite
and has more than m h-steps. We have arrived at a con-
tradiction. Hence the head chain (4) is finite and the term

M ; hasa QNF in C. []

The terms M =aM|.M; (k>0) and N =bN,..N;
(s 20) are in essentially different QNF iff

1) M and N are in QNF in the calculus C:
2) k#s or a#b where a,be AUV .

Lemma 2. If M and N are in essencially different QNF
then M o« N in the calculus C.

Proof. By the Church--Rosser theorem. [
Let the sequence

RO 6)

of closed terms satisfies the following conditions:

(P1) Q; = O in the calculus C for i # j;

(P2) O; has no QNF for each i.

Lemma 3. Let Y=YY,
{xl,...,xm}, Yl ExiZI...Zk
§ 20, 1<, ism.If

be a term over the set
,Y2 EIle...U k=20

53

*
Ylxp,eor Xy =0pyees Ol = M
then there are the closed terms M 1 and M, such that

(a) M =M M, ;

(B B[t =0k On 1> My (=125

(¢) M| =SN,..N; for some closed terms S,Ny,..., N,
and Q; > S;

(d) My =TL,..Lg for some closed terms T,L;,..., L,
and Q; > T.

Proof. By induction on the length of the reduction chain
of Y[xj,e Xy =010y Oy ] to M. O

Let

MN™ % =MN..N (Nrepeats k times).

Lemma 4. Let there is a closed term @ which has no
QNF in the calculus C. Then there exists a sequence of
closed terms (6) which satisfies the conditions (P1), (P2)
and the following condition

(P3) (Vi)(EIQ; NO; = Q;a] where a is a basic combinator
in C.
Proof. Let Q" = Q0. Define

01=0"a, Opy=0,a (m=1) (7

where a is an arbitrary basic combinator of the calculus
C. Then

On=00a™

The condition (P3) is satisfied. Now we prove that the
sequence (7) satisfies the conditions (P1) and (P2).

(m=1).

Let 0, =" U (m21). By induction on the length of the
reduction chain of Q,, to U it is not difficult to prove the
following three propositions:

D) U=QQ0a™™;
B 0—"0 and 0" 0"
v) Uis notin QNF in C.

It follows from v) that the sequence (7) satisfies the con-
dition (P2).
Let O; ~ Q; for some i and j, i # j. We may assume
that i<j. By the Church-Rosser theorem there exists a
term U such that

0;="U and Q;>"U.

Clealy U is a closed term. By o) and B) there are the
closed terms Q,f, Q;', Q}, QJ such that

U=0,0;a™ =0)Qja™/,
0, =" 0, 0,0,
0; "0, 0;-" Q)

Then Q;- = q and the term Q has a QNF in the calculus
C. We have arrived at a contradiction with the condition
of the lemma. Hence the sequence (7) satisfies the condi-
tion (P1). O

The right side X of the combinatory identity (1) can be
uniquely presented in the form

X Exin...Xk

where X, ..., X; are terms over the set {xl,...,x,,},

k = 0. The number £ is called the degree of a basic com-
binator ae A and is denoted by dg(a).

Lemma 5. Let the calculus C has a basic combinator
a€ A such that rk(a) <dg(a) . Then there exists a closed
term O which has no QNF in C.

Proof. Define Q=aa™ where n=rk(a). Let 0 — U .
Clearly U is a term over the set {a}, U =alU,..U,, for

some closed terms Uy, ..., U,,, m=rk(a). The term U
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is not in QNF in C. Hence Q has no QNF in the calculus
G0

Proposition 1. Let ¥ and Z be any terms over the set
{x],...,xm} (m=1). Supposc that there exists a closed

term Q which has no QNF in the calculus C. If for all
closed terms A, ..., B, ,

Y[ XisrosXm = Plsesibig ] = Z[ X sss Koy = Bl
then Y=27.
Proof. By induction on the structure of ¥, using the lem-

mas 1-5. 0

Proposition 2. Let the terms Y and Z be as in the proposi-
tion 1. Suppose that the calculus C has an atom. If for all

closed terms A, ..., B,

VBB B Bn 12 2 Xjreesiy S s}
then Y=2Z.

Proof. Let @ be an atom of the calculus C. It is possible to
construct the closed terms Oy, ..., @, over the set {a}

which are distinct and have the same length. In this case
the closed terms

Y[¥=0] and Z[%:=0]

where X =xp,....%,, Q=Q],...,Qm, are in NF in C. By
the Church—Rosser theorem we have the syntactic equal-
ity

Y[i=0]=Z[¥=0].

Since @y, ..., O, have the same length, the numbers of

occurrences of the variables in ¥ and Z are equal. By in-
duction on the structure of ¥ one can prove the syntactic

equality Y=2 .0

2. Conclusion

In the present paper the sufficient conditions are given
such that for a simple combinatory calculus C the relation
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(vB)¥1s = P1~ Z[% = P))
implies the syntactic equality
Y=2,
where ¥, Z are any terms over the set of variables
o> B

are closed terms, ~ is the equivalence relation of terms in
the calculus C.

[isrers % b B=Barrssdis P=BinisPp 908 B o
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