Conception of Situation-Oriented Databases

V. V. Mironov
Department of computer science and robotics
Ufa state aviation technical university
Ufa, Russia
e-mail: mironov@list.ru

N. L. Yusupova
Department of computer science and robotics
Ufa state aviation technical university
Ufa, Russia
e-mail: yussupova@ugatu.ac.ru

G. R. Shakirova
Department of computer science and robotics
Ufa state aviation technical university
Ufa, Russia
e-mail: gulya_shakirova@mail.ru

Abstract!

The paper is concerned with discussing situation-
oriented approach within new class — situation-
oriented databases. The main principles of situation-
oriented databases organization are formulated.
Also architecture and structure characteristics of
situation-oriented databases in its conceptual
context are defined.

1. Introduction

Today any activity area supported by information
technologies is impossible without databases. Their role
»is much more than just information accumulation and
storage — often databases are used for decision making
support, are treat like sophisticated intellectual systems.
Databases are the reflection of any innovations in
hardware and software. New standards, new technologies,
and new formats — all are inevitably mention in database
sphere. That reason explains wide variety of database
classes, and tags of their classification.

One of the key signs, which are used for database
classification, is type of data model, which provides the
data management. In that context there can be defined
hierarchical, net, relational, object-oriented databases,
based, accordingly, on hierarchical, net, relational and
object models.

In many cases business processes modeled in the
databases can be described as situation-oriented. In other
words they can be interpreted as some situation states
changing. For example, process of technical object

Proceedings of the 12" international workshop on
computer science and information technologies
CSIT?2010, Moscow — Saint-Petersburg, Russia, 2010

projecting can be defined as collection of consistently /
parallel way executable states: a requirement
specification, the preliminary design, and the equipment
design. A part of information must be inserted on the one
state, the other — on the next one, etc. In this context
appears the necessity of creating and manipulating data,
characterizing the appropriate states of projecting
situation development.

Today on the level of database management systems
(DBMS) the mechanisms of data management according
to the current situation are unknown. The traditional
approach to databasc organization is not oriented on
situational «filtration» of user data. This problem is to be
solved on the application level. In this context it’s
suggested to apply to databases the technology of
embedding dynamic models. This approach was applied
in systems of different kind — from systems of technical
objects management to electronic documents [1, 4].
During developing and research of dynamic documents
(that means documents with in-built dynamic models
describing main states of their life circle or using) was
investigated that there must be a special class of
databases, based on dynamic (situational) model.

This paper is concerned of describing conception of
situation-oriented databases driven by inbuilt dynamic
models, and the possibilities of its XML-realization.

2. Situation-oriented databases conception

Definition. Situation-oriented database (SODB) is
intended for manipulating data and describing some
subject area situation developing on two levels:

e macrolevel — as the integrated (macro-) states;

e microlevel — as detailed (micro-) states, associated
with the macrostate

Workshop on computer science and information technologies CSIT’2010, Moscow — Saint-Petersburg, Russia, 2010

13

and its differing feature is concerned with supplying more
convenient data access to the applications by such
components as:

e dynamic model of macrostates, defining the situation
development on the macrolevel;

e possibility of active behavior for the external events
for describing current macrostate;

e supplying access to the microstates in the context of
current macrostates.

This definition contains a number of key terms: two-level
situation model; dynamic macrostates model; active
behavior of situation-oriented database; situational data
access. These questions are described below.

Two-level situation model. Discussion of situation-
oriented database is important to be anticipated by
defining its basic term — «situation». The situation is a
number of conditions and circumstances, defining the
particular situation, state.

It’s supposed that the subject area, modeled in the
database, can be described as a development of some
situation that means the changing of its current states. In
this context situation model can be defined on two levels.
On the upper one — the macromodel of integrated states,
describing quality situation development as a finite set of
states with jumps defined by the set of rules. On the lower
one — micromodel of detailed states defining situation
with more details: cach situation macrostate is described
by the set of its microstates.

For example, considering busincss process of some
product projecting as a situation development on the
macrolevel we can use standard project steps as
macrostates: requirement specification, equipment design,
contract design, etc., and separate substates of that states.
So the process of situation development is the pass from
one current macrostate (state) to another; from one
substate to another. By this situation macrostates are the
sets of the appropriate properties, defining the
appropriate macrostate: date of decision making; persons,
making decisions, technical documentation, prepared on
some states / substates, etc. It’s clear, that storage of that
data can be realized in the traditional databases,
relational, for example. But in this case the problem of
describing current macrostates and access organization
for the appropriate microstates is to be solved on the level
of applications, working with databases. But we arc going
to put thesc tasks mainly to the DBMS, managing data.

Dynamic macrostates model. It’s necessary for SODB
to consider current states by the situation states model
(situation development model). We assume that the
situation development on the upper level can be defined
by the finite state model (FSM) in any form (states graph,
Petri net, etc), that is as the finite set of states and set of
rules describing conditions for changing current states
from one to another according to the external data. That’s
why the FSM-driven database (FSM-DB) can be

Conception of Situation-Oriented Databases

16

considered as situation-oriented. In this paper FSM is
considered as so called hierarchical situational model
(HSM).

In this case stored states are the information about which
FSM states are current (and which were in the past), and
the stored data are associated with FSM states. Stored
states and stored data are defined in the current states
model (CSM). It is a part of the SODB intended for
describing situation current states change.

Concerning microlevel we suggest that each situation
macrostate can be brought in correspondence with an
appropriate data set, characterizing data microstates of
macrostates. It’s also suggested that the data development
can be premeditated by the definition of schema
(structure, limitations, that is data model). So microstate’s
change within its macrostate is evinced by data values
change limited by schema.

For example, defining macrolevel of product
development situation, in the simplest case we make
states graph with macrostate (development stage) as a
node and jumps between that states — as arcs. Each node
is followed by properties set, characterizing this stage.

Thereby if on SODB macrolevel its behavior (microstates
change) is quite strongly limited by inbuilt dynamic
model, then on microstates dynamic restrictions are not
supposed: microstates values are limited by static
restrictions according to the appropriate schema.

On passing to new macrostate associated microstates are
initializing according to schema. After that application
access to microstates opens to create, update and delete
the appropriate values. It’s possible that start values of
some macrostates inherit final values of definite
microstates of past macrostates. This behavior is to be
defined by schema. Thereupon it’s important to outline
temporal SODB, supposing storage of both current and
past states that is tracing prehistory of situation states.

Situation-oriented database active behavior. By a
definition, database is active, when it has some
premeditated processes, changing the database state.
These processes are set up not by user (or application)
initiative, but by the system mechanisms of the database
as an answer for the some premeditated conditions (or
events). The SODB active behavior is associated with the
rule called «event-condition-action» (ECA). This rule is
concerned with the following. At the defined event the
condition defined in the rule is checked; in the case if this
condition is entry, the defined action is also performs.

Special organization of SODB gives its own meaning to
the events and conditions terms. In this context the event
is concerned with FSM current states change, and also
operations of associated (with states) data creating and
manipulating, etc. The action in SODB is a set of the
processes defining FSM current states change, forced
current state change (FSM internal predicates), «moving»
associated data values from one state to another, etc.

2 O—[>e 1

Current slates model

User

Subject Area

%

Interpreter

2O={B 7

Finite states model

Fig. 1

Thematic example of ECA-rule is concerned with CSM
management in FSM. The base event for this rule is the
operation of state pass set up, the condition is a
possibility of performing that pass (predicates), and the
action is creating a new state in the CSM.

The active behavior is to be shown on both SODB levels:

® on the macrolevel — by tracing FSM current states
change and it’s clamping in the CSM;

e on the microlevel — by accumulating the associated
data values on the current states change.

Data access in the situational context. In the extreme
cases SODB must provide some traditional functionality
that is an access to the stored data irrespective of the
situation current state. In this context there can be
defined:

e situation-dependent data, appropriate for any situation
current states and demanding current state control for
providing access to them;

e situation-independent data, appropriate for any
situation current states and not demanding current
state control for providing access to them.

In the first case SODB provides to user some advantages
that are concerned with fact that the SODB performs
situation current state management, and also provides
data access in the current state context.

In the case of situation-independent type of data
organization the information can be inserted both on the
start state of some situation and updated during situation
development.

It’s possible there to provide access dualism: all the same
data can be selected both by situation-dependent queries

considering current states and by traditional situation-
independent queries not considering model current states.

Situation-oriented database development and
manipulation. Operating with SODB can be represented
as two-step process (Fig. 1). On the first (start) step
database developer defines the FSM structure based on
the premeditated subject arca analyses, describes data
structure and assigns a correspondence between model
data and states. The next step is concerned with
generating database copy — CSM, which is intended for
track user moving between model states and define
associated data values.

Situation-oriented database realization platform.
SODB organization principles define selection of its
realization platform (and certainly developing
management system for such kind of database). That’s
why it is reasonable to perform SODB on XML platform
according its two main advantages: variety of XML
technologies and wide spectrum of their. possibilities for
describing and manipulating data; hardware and software
independence of XML data.

2. Architecture and structure characteristics
of situation-oriented database organization

Typical database architecture is defined by the set of two
invariable components — metadata and data itself.

Data is the information accumulated and stored in the
database. By one of the definitions, data are defined facts,
which logically provide getting new information [3].

Metadata is higher level data which describes structure of
data stored in the database, «data about data». These are
additional, reference information about the data.
Mctadata is the object providing DBMS information for

Workshop on computer science and information technologies CSIT*2010, Moscow — Saint-Petersburg, Russia, 2010

17

data management and internal processes in the database,
their relations and way of use.

Representation of both data and metadata depends on
data model, used by the database. For example, relational
database’s metadata provides relational structure and
contains descriptions of tables, fields, indexes, rules and
other components of the database. The data themselves
are represented also in relational form as a set of
connected tables.

Data and metadata organization defines mechanisms of
data describing and processing — data definition language
(DDL) and data manipulation language (DML). DDL is
intended to describe information in basic conceptual
schema and it’s following transforming into appropriate
object form. Data processing supposes selection and
manipulating information in the database, and also
inserting there new data. In other words, it is
manipulation of information, stored in the database, via
DML.

As it was mentioned in SODB metadata is FSM, which
defines a sequence of available states and describes
structure of data, linked to states.

DDL and DML perform two kinds of operations —
develop FSM and tracking CSM. According to its
possible XML realization data defining and manipulating
supposes operations of creating and manipulating XML-
structures on the basis of appropriate XML-technologies
(DOM -objects, XSL-transformation, XML Schema, etc).

SODB class model can be represented as a set of three
models (Fig. 2):

e dynamic model (FSM mentioned before) defining
situational component of the database;

e associated data schema — its informational component;

e current states model — user copy of situational model
with data values.

According to XML-organization of SODB each onc of
that components must have object XML-structure.
Technologies of XML-platform supply a wide varicty of
possibilities for describing and manipulating data content
and structure.

Finite state model (dynamic model). Finite state model
(FSM) as a situational component of the database defines
a set of the states, integrated to submodels, connected
together with jumps and containing dives into other
submodels.

FSM can be considered as copies set of three object
types — submodels, states and jumps (Fig. 2). One of the
states is called head. It contains dives into submodels
defined by the set of states (submodel states). At the same
time the submodel structure doesn’t depend on the state
type — it’s identical both for head and different states.
Additional components of FSM are associated data
schema and current states model.

Conception of Situation-Oriented Databases

18

Object structure of XML language allows for each type of
FSM objects to put in correspondence its own XML-
element and their properties can be represented as XML-
attributes.

Diagram of FSM XML-elements is shown on fig. 2, a.
The scheme uses notation used for conceptual description
of database models [2] and XML-structures [5].

FSM elements are concerned to be close type. That means
that their copies can’t contain attributes and embedded
elements besides those, which were defined in the model.
The diagram represents the close type property by dark
shadow behind the contour of object type graphic
presentation. The diagram also describes three main
propertics of each model object type — multiple,
compulsion and sequence order.

FSM elements multiple values ability defined allowed
number of their copies. Single clements, supposing the
only copy in the model, are outlined by the circle in the
end of the extension line, connecting these clements with
parent element, multicopies elements — with arrow-
triangle. So, for example, in the submodel all elements
(excluding data schema) are multicopies type.

Among the FSM states only head state submodels are
required, that is shown by dark symbol in the end of the
extension line, connecting graphic representation of
model with head state. Optionality of other elements is
shown by white symbol in the end of the extension line,
connecting these elements with parent element.

Fixed sequence order of the clements is typical also for
the head state. Optional sequence order of other elements
is shown by parallel lines, grouping them within parent
clement.

Associated data schema. Data schema within dynamic
model defines definition of structure of data, associated
with FSM states.

Data scheme supposes four types of objects: simple and
complex elements, referential elements and description
elements. Simple eclements (by analogy with simple
indexes in databases) are elements, which contain only
single values. Complex elements don’t contain values, but
they contain sets of simple data elements.

Description elements can be considered as some kind of
vocabularies — they contain simple and complex elements,
describing some class of subject area objects. One of the
simple elements there is supposed as identification
value — that means a value, given unique characteristics to
its copy. Referential elements are values, referencing for
that identification values.

Diagram of data scheme elements is shown on fig. 2, b. It
uses the same notation as in the description of FSM
structure. XML-realization of data scheme is possible
with XML Schema technology. This allows describing
both structure of separate elements and defining
restrictions for their values.

Date
H
(ead state Goltae }

Submode

1 Dat
Scheme

Submodel state

Date
Scheme

Current States Model

Current States Model DE ’

Current state)—o DE \
Past state)—0 DE \

Submode Past state }—o DE \

Submode

b
Data
scheme / DB
Simple data Simple data
element
element
L Complex date Complex date Simple data
element element element
> Complex date
—> Data reference — et BT
s Simple data
—>[Data description > alement
—>1 Data reference "
c
Fig. 2

Workshop on computer science and information technologies CSIT’2010, Moscow — Saint-Petersburg, Russia, 2010

Current states model. Current states model (CSM) is the
only SODB component, providing non-system
information. User manipulations with SODB, in final,
come to the tracking CSM copy, where all passed states
and data, associated with them, are stored.

CSM structure is represented by three types of objects:
root element, associated with FSM head state; submodels
and states. Fig. 2, ¢ shows a diagram of CSM objects,
based on upper mentioned notation.

For cvery state (including the root clement) can be
defined object of type «database» (DB). By its structure
this element is like data scheme — it also contains simple
and complex elements, references and descriptions. The
only difference is that this type of object is not just a
structure, but also a set of values, defined by user.

CSM architecture supports «history» property — each new
current state doesn’t replace all the past, that allows both
tracking sequence of user made steps and perform
rollback to any other passed state.

XML-realization of CSM supposes using hierarchy of
XML-elements and attributes. So, for each user accessing
XML SODB assumes creation of XML-document, where
passed states and inserted data are stored.

Addressing. Important aspect of structure model is
addressing data elements in user’s CSM. For any data
element in CSM hierarchy must be available it’s
«address», that is expression allowing access to data
element. Key part of addressing is «entry point» — the
node, from which the address emerged.

Addressing within XML SODB supposes two ways
(Fig. 3).

Conception of Situation-Oriented Databases

20

First one is concerned with the following. XML database
as XML document supposes traditional absolute XPath-
addressing. This address includes full path to the state,
with which this data element is associated. At the same
time full path to the state contains consecutive counting
of all parent clements — from head CSM element to
submodel with state in it (Fig. 3, a).

Second way supposes that addressing is situation-
oriented. It means that address tracking is performed not
from the hierarchy root, but directly from current states.
That's why XPath-expression is added by logic of
predicates tracking — «searching» submodels with actual
value of attribute «current» and defining their current
states (Fig. 3, b).

4. Conclusion

e Situation-oriented databases are the databases with
inbuilt dynamic models. Their key advantage is
ability of interacting with data in the context of
situation, development of which is described by finite
states model.

e Architecture of situation-oriented database is
represented by three components — dynamic model,
defining sequence of available states in finitc state
model terms; associated data scheme, limiting data
structure, associated with model states, and currents
states model, describing user copy of situation-
oriented database.

e XML realization of situation-oriented database
architecture is intended for representing describing
data in XML markup form, and limiting — via XML
Schema.

Acknowledgements

This investigation is supported by the grants 10-07-
00167-a and 09-07-00408-a of Russian Foundation for
Basic Rescarch, President of Russian Federation grant
HII 65497.2010.9 for leading scientific schools.

References

1. Yusupova N. I. Critical situations and decision
making in interferences: monograph. Ufa: Gilem,
1997. 112 p (In Russian).

2. Mironov V. V., Yusupova N. I. XML-technologies in
databases. Ufa: Ufa state aviation technical university,
2004. 182 p (In Russian).

3. Deit K. J. Introduction to databases. M.: Williams,
2001. 1072 p (In Russian).

4. Mironov V. V., Shakirova G. R. Electronic documents
with inbuilt dynamic model on the basis of XML:
monograph. Ufa: Ufa state aviation technical
university, 2009. 179 p (In Russian).

5. Mironov V. V., Yusupova N. L., Shakirova G. R.
XML-technologies in electronic documents. Word
documents. Ufa: Ufa state aviation technical
university, 2009, 208 p (In Russian).

