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Abstract'
The problem of building correct algorithms of
pattern recognition is considered. For some classes
of estimation algorithms, criteria for correct
algorithms are obtained. Conditions of correctness
are formulated in terms of solving a constrained
optimization problem. An optimization algorithm
based on variable climination using the spinor
method is proposed. Under the conditions of
correctness, the proposed method significantly
reduces the computational complexity of
synthesizing a correct algorithm.

1. Introduction

The notation and definitions from [1] are used. The
pattern recognition problem Z={I, 89} is considered,
where Iy is the training information,
lo={81,K 8, 6(8)).K,8(S,)}, S;=(a;nK, ap),
ajeM;, &S)e E},i=1,2,...mj=1,2,...,n and
§7=(5'K ,89), §'=(byK ,b,). i=1K,q, is the

training sample. The information vectors & for S7 are
assumed to be known. The aim is to construct an
estimation algorithm (EA) that works correctly on the test
sample of the vectors of the estimation algorithm.In the
general case, an EA is as follows (see [1]):

I;(8)=xT}(S)+xT} (S,
M= ¥ Tvs)p@B@S, 5.8,

I S;eK; de{d,)}
1

E=— Y  XyS)p(@B(@S;dS.8); here,
Qo S,—EC]EJ— De{d,}

where xp, %1 € {0,1},

T is the estimate of the object S with respect to the jth
class, Qg and O, are constants, K; (CK ) is the set of
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elements of the training sample that belong (respectively,

do not belong) to the jth class, @ is the characteristic

Boolean vector of the support set, y; = Y(S)) arc the

weights of the training objects, y; € [0, +o0), p(®)= p ;
w

are the weights of the features, p; e [0, +o), B is the

proximity function, and B=1-B. We assume that the
proximity function B satisfies the following conditions:

e B(®S ®S,e)=B(DS, 0S,e);0< B(®S, ®Y,¢) <1:
e B(®S ®S.e)=1,if ®S=S.
We use the threshold decision rule C with the parameters
¢ and ¢; (see [2, 3]):
Cler, e): CTy]) = |CT )|, rae

1, I-:‘J >Cy

0, I‘U <Cl’
A, C1 < Flj < Ca

C(F:j) =

,0<¢e <es. 0

No explicit descriptions of the class of solvable problems
for estimation algorithms are known. Solvability is only
proved for some submodels (see [4, 5]). This is explained
by the fact that the EA model has many degrees of
freedom, and the problem of finding optimal values of the
parameters is very difficult. In practice, locally optimal
algorithms are usually sought (see [6, 7]). Moreover, the
number of the parameters to be optimized is usually
limited, which simplifies the optimization problem.

The rest of the article is as follows. In Chapter 2, the
optimization problem is formulated. A method for solving
the problem using spinors is described. In Chapter 3, a
new algorithm for constructing correct EA is proposed. In
Conclusion, the results and future research are briefly
described.

2. Optimization criteria for EA

The aim of this study is to find out if it is possible to
ensure that an algorithm works correctly on the objects of
a validation sample by varying only the weights of
features and the weights of objects. We also want to find
the conditions under which such an algorithm can be

Workshop on computer science and information technologies CSIT’2010, Moscow - Saint-Petersburg, Russia, 2010

165



built. The problem of building a correct algorithm is
equivalent to solving the system of inequalities

F] >C,‘2,K 5 FT>c2 (2)
FT+1<C],K,FQ<C],
where @ = gl; T < Q; the index i = 1, 2, ..., O

corresponds to an enumeration of the two-dimensional
array {(u, v) |u=1,2, ..., Lv=12,..,¢};and I; =
T(S"). For that purpose, the problem is decomposed into
two parts: first, a solution of a certain transformed
problem is found that contains among its solutions all the
solutions of the original problem; then, the solutions of
the original problem are among them.

It is well known that the method of algebraic closure of
EA (see [1, 2]) makes it possible to build correct
algorithms on given validation samples. Concrete
algorithms are built as complex multialgorithmic
constructs. For that reason, the problem of building
correct algorithms in the framework of the original model
remains important. [n this paper, we consider some
problems in which a correct algorithm can be constructed
in the framework of the original family of EAs, and an
algorithm is proposed that minimizes the number of
errors on the validation sample.

Consistency criterion of system (2). We distinguish the
case when there exists some k£ € {1, 2, ..., m} such that y;
belongs to each [; fori=1, 2, ..., T and does not belong
toany I; fori=7+1, T+ 2, ..., 0. In essence, this
means that the problem is solvable with respect to the
individual object Sj. In this case, one can construct the
desired algorithm using, for example, the following
weights: Y,>cp, 1=0, for j=1,2, .. k1L k1, ....m,
and p;=1,i=1,2, ..., n. A similar situation occurs when
there exists k € {1, 2, ..., n} such that p; belongs to each
I'; fori=1,2, ..., Tand does not belong to any I'; fori=
T+1,T+2,...,0.

Inconsistency criterion of system (2). Denote the set of
all pairwise products of the weights m, = yp; (k= 1, 2, ...,
nm;i=1,2,...,mandj=1,2, ..., n). Assume that there
exist £ € {1, ..., T} and t+ € {T*1, ..., 0}, such that
I“[~ :Tt* (nl_l K ,Tl:l_j) and T, =T, (1‘t[-l K ,nij) for I, J
e {1, 2, ..., nm}. In this case, if (i', ..., ) < (i1, ..., i),
then it is clear that, forany m, (k= 1,2, ..., nm; i=1, 2,
savgdtly Al 755 1y 25 ey 1) 1'1* <T,,, and system (2) is
inconsistent.

The main idea of the proposed approach is as follows.
Some inequalitics in (2), for example [';<¢y, i=T+1, ...,
@, remain intact, and the other inequalities are replaced
by the nondecreasing functional f{Yi, ..., Y P1s -+ Pn)s
such that all the solutions to system (2) are solutions to
the constrained optimization problem

{f("n,K s 21K ) = max

3
FT+Z<C]’K’FQ<CI ()

The functional (Y1, ..., Yms P1, ---» Pn) €an be chosen such
that the solution of problem (2) is reduced to problem (3).
The following example confirms this idea. In the case of
the functional

T
f(’Y]sK staplaK :pn)= ZSgn(rz _02)1
i=1
if maxf = T, then the corresponding solution
w0 = (y{o), K.y, p]m) . e, p,(go) ) obviously is a
solution to problem (2). If max f < T, then system (2) is
inconsistent.

If system (2) is inconsistent, then we want to find the
maximal consistent subsystem. This can be done using the
algorithms described in [6, 8].When the simplest
functional

m n
iy PO, K Pp) = Zai'}’i £ Zﬁipi

i=1 i=1
where o; = 1 for v; belonging to at least one I'y, ..., I'r and
o; = 0 for vy; that do not belong to any I'y, ..., I'r and,
similarly, ; = 1 for p; belonging to at least one I'y, ..., I'r

and B; = 0 for p; that do not belong to any I'y,..., I'y,
problem (3) takes the form

m n
20,y + 2B p; = max

i=1 i=1 4
FT+] <C],K ,FQ <Cy

Theorem 1 (see [9]). Let f{y,p), ¥=(, - Ym)
p=(p1,....,p), and T(y,p), i = T+1, ..., O, be convex
fonctions; x = (X1, ...y Xum), Xe=YPp k=1, ..., nm, x € E,
= be a convex set; and the Slater condition be satisfied
(that is, there exists an x° such that T(x") <0, for
i=T+1,...,0. Then, a feasible point x* is a global

solution to problem (3) if and only if there exist 7\:: 20
such that A;T;(x)=0 for i = T + 1, .., O and
L(x,X) ZL(x*,l*) for any x e E, where
A= (K?nﬂ,K . 7\.*Q) and L(x, A) is the Lagrange function.

The Lagrange function is defined as
LK, Ym P1K , py) =
m n
= 204, + 2Bipi + M (T —c) +K + AT —¢y),
i=1 i=1
t=0-T.

The corresponding system consists of n + m + t equations
with n + m + ¢ unknowns; it has the form
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oL

=§E—FT+1 €1,
ar (5)
0=a—L—ai+11M+ ol
i 97; 97;

dL or" or’
O=— =8 +4 Lty 41, —2

ap,,, ﬂ; 1 apn ! Bp,,

For the simple estimates used in recognition problems
solved using EAs,

v 1
LS ):N_Z Z 'Yr(Pil+--'+P:'k)B$j

uogs.ew)

and system (5) is bilinear:

1

0:N D Vr(py +..+ Py, By, — €
o ©§,eW,
K
1
0=N X Y V(py+.tp)By —c
U O S, eW,
r up
1
0=Bj+M——3% ¥ E'v,B +K+
L | erEWJ]
1
+A, Z ngt'YrBﬁ,
Hy (DS,eW,}l
K
1 1
J0=B, +A, 3 ZS ZWl L1 By, +K +
1 ®S5 e
L
1
+7\'tN Z Z&;t'YrBs,

U ® 8, e W,}l
1 1

O=o +A1 ——2 &0 (py +.+ py, )By +K +
W

1
+ A — 2 b, +u4py, )8y,
Nu, ®
K

0=0,, +A :

N

1
VY A (D +..4p;, )BSI +K +

U

i
+ AT Eam By +-t 2y B,
N, o

Here, 2;}(’ € {0, 1} depending on the corresponding values
of o and S,. It is clear that it is difficult to solve such a
system analytically in the general case. Various methods
for solving systems of nonlinear algebraic equations are
available (see [10]). From the viewpoint of obtaining
linear relations between the variables in the case when the
number of equations is not very large, the spinor method
of variable elimination is efficient [11].

The idea underlying this method is to design a procedure
for splitting the original nonlinear equations into linear
ones in the unknown factors B; and ®, where @ is the
spinor that is common for all the equations of the system
and B; is the matrix corresponding to the spinor for the ith
equation. The procedure is designed using special
algebras of the type of the Clifford algebras. To eliminate
the variables, it is sufficient to know the explicit form of
B;. In the forward elimination, the solution to the original
equations is found in terms of the basis elements of these
algebras. The unknowns are eigenvalues of this solution.

For convenience, we rename the variables in (2.4) as
follows: Y1 =1, ..., Yon = Xons P1 = Xmt1y «ve» Pn = Xppims M =
Xontls oo N = Xpinins M = mtn+t,. The corresponding
coefficients of the variables are renamed so that a;; is the
coefficient of the term x;x; in the ith equation, where i.7.k
€ {1, 2, ..., M}. Then, the system can be rewritten as
follows:

2
R = xy(a;1x) +ajxg +K +aj 0 x0 +b;)+
+X2(@i00%p +aj53x3+K +appxy +bp)+  (6)
+K +xp (@img Xy +bipg) +¢; =0, i=1,K M.

The canonical form of a system of nonlinear algebraic
equations is

_w ki 1i
B®=[z1"x) +2; (a1 +K + a2 +b;)+
+z{'xy +23 (9%, +K tapyxy +bp)+ (7
+K -i~ziMixM +z¥i(a,-MMxM +b,-M)+el—1fc,- @ =0.

The clements e; are generators of the algebra of unipotent
alternions (see [12]) defined by the generating relation

8['1 eiz +efzef1 = 281'18!'11'2@ (l = 1, Zp), (8)

where g; 1s equal to +1 in s equations and is equal to —1

in the other 2M — s equations, e is the unit of the algebra,
and 9;; is the Kronecker delta. In what follows, the

generators of the algebra of unipotent alternions whose
square is equal to e arc denoted by o and those whose
square is equal to —e are denoted by B;.

The finite number of clements zg (o =1, 2) can be
enumerated using a single index f; to form the elements

z(’,", where f, ranges through a finite set of integer values;

for example, z%l =z%, 3! :z%, K . The elements z% (o =

1, 2) are generators of the algebra of nilpotent alternions
defined by the generating relation

h b L4 _ hh 8
Z5, %5, +ZO‘ZZG]_8116 85,0,@ &)

where 8%% is the Kronecker delta and 50102 =1-85,-
Algebras generated by relations (8) and (9) can be
combined into the unified algebra of unipotent and
nilpotent alternions (or, shortly, the algebra of unions) in
which the elements satisfying those permutation relations
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are linearly independent. Due to the linear independence,
we introduce a column @ that has the order equal to the
order of the matrices to guarantee that a solution exists.
Such a column @, which is common for all the equations
in the system (B = 0), exists and is defined up to a
factor by specifying an irreducible matrix representation
of B; (see [12]). The possibility to pass from (6) to (7) is
justified by the following result.

Theorem 2 (see [11]). Every solution to Egs. (6) is a
solution to Eqs. (7) and conversely.

System (2. 6) can be written m matrix form as AX=

where — " A,J- Il. = " x® Il =le "
Q; =—(z3'by +23'bip +K +Z§4 bim +€n/_i)‘1’s and
Agj= Zéi“ilj +Z%iai2j +K "‘Z{i“t}j "'Ziﬁ' The

elimination of unknowns is performed by inverting the
alternion block matrix A and by multiplying the system
by A" on the left. Then, the system takes the form

Xi= Aﬁ]Q, and each equation takes the form x,® = G,
where C; is the alternion component of A Q.

Theorem 3 (see [11]). The solution x;& = CP is a vector
solution to system (6).

The generators of the algebra of unipotent alternions (8)
satisfy  the =k B% ==FE.
oc;l =0y, B! =By in particular, (A[j)_l =A;/ay.

relations Thercfore,

Thus, we have reduced the solution of bilinear system (5)
to the eigenvalue problem for x; of the form (C; — x;£)® =
0, i.e., to the system of equations

(C; = x;EY® = (A [ay)Q;i —x;E)P =
—(H{ ('a

+zz azZJ +K +22 ajj; +z1 )/abj)

@¥by1 +23'b5 +K + 28"y +epfe) 1 E)YD =0,

where i=1, ..., mtntt, M=mtntt, X; =1, ooy X = Ymo
Xmtl = Pls vvos Xtn = P xm+n+1 R‘1: vory Xppintt _‘xM=?L!:
E
the coefficients a;; = { Z ,forj=1, ...,mk=m
g=1 "Tuy
t 0,7 BE
g=g v 4
+1,....m+n > ——L forj=m+n+1,...m+n
&=l ]
Be
gE.)H+g "
+tk=1,..,m; Z ,forj=m+n+1,
g=1 N“f )
mtnttk=m+1l,..m+n 0 =00 He {1,2}}

and @ is the spinor that is common for all the equations in
the system.

If thcsjc equations are multiplied on the left by C; : x,C;®
= (C;)*®, then x,*® = (C;)*®, and we obtain the following
result.

Theorem 4 (see [11]). The problem (C; — x;E)® = 0
(i=1,...,p) is an eigenvalue problem. To obtain the
ckaracteristic equation, no matrix representation of e

and z is required.

The resulting characteristic equation can be solved
numerically to obtain 2 values of x;. For each of them,
the corresponding @ can be found, and the spinor @
determines the tuples of solutions.

3. Optimization algorithm

The general scheme of building an algorithm that
minimizes the number of errors for a certain sample is as
follows. The violated inequalities for TI; in (2)
(ie{l,...,T}) are found. According to a given criterion
Cry, one of them is selected. An attempt to satisfy it is
made by modifying some variables such that the valid
inequalities remain true. The variables are chosen in
accordance with a given criterion Cr,. If such a
modification can be done, the next violated inequality is
chosen, and the procedure is repeated. Below, we
consider an example of the implementation of the
proposed scheme.

1. An arbitrary solution

wo = (’Y(o)s :“{E,?), P{O) o3 p,(,o)) to problem (3)

is substituted into (2). It is clear that the incqualities in
(2) with the indices i =T+ 1, ..., O are satisfied.

2. The inequalities in (2) are arranged in descending
order of their left-hand sides upon the substitution of
W. Among the inequalitics with the indices

. i=1,..., T, select those that are violated, i.c., the
inequalities in which the sum on the left-hand side is
less than ¢;:

n

L,E"= Zpi(“!jl +K +v; )=p(y; +K +7; )=
i=1

=@y, =03 =8y, 8,, > 0.

3. Among these inequalities, find the one for which §,, is
the largest. Assume that the left-hand side of this
inequality contains the weights 7y . K.y j,» With the

indices jj, ..., js. Without loss of generality, we
assume that the indexation of the inequalities remains
the same as in (2) when they are ordered. Thus, the
inequality with the index 7 has the following form:

N 12 o T o Y- Vm

1 >

s > 6
S+1 =5 - 519

PIlG]L|mEle L] &1
T+1 P01}

:Cz-BT

=cy - O
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=c; -0

e

=c1-BQ

Fig. 1. The form of the inequality with index T

4. Among the inequalities with the indices i=T7+1,
..., Q involving the weights y ; Ky j, the inequality
with the minimum index P; is found for each v Jie
Then, the inequality with the index P=max{F;} and

i=l,s
the weight 7y; corresponding to this inequality are
chosen. In this inequality, the difference between the
left-hand side and ¢, is the largest.

5. The weight vy Ji increases by the maximum possible

R
quantity &p, where Ep <8p/ 2 p;. If 8p > 8y, then
i=1
go to the inequality with the index 7" — 1, and the
procedure is repeated from step 4. Otherwise, the
inequality with the index P'=max({F;}\P) and the

i=ls
corresponding weight ¥ is increased by & pr, where

n
Ep: <dpr ZP:‘-

i=1

6. The procedure is continued until the left-hand sides of
all the inequalities with the indices from 1 through T
exceed ¢, or until the reserve in the inequalities with
the indices from T+ 1 to Q is exhausted.

This algorithm, which minimizes the number of errors in
the recognition problem under examination, belongs to
the class of greedy algorithms. Greedy algorithms are
computationally efficient. In many combinatorial
optimization problems, they produce solutions that are
close to the optimal ones. If the set of inequalities (2) is a
matroid (see [13]), then, by the Rado—Edmonds theorem
[14], the greedy algorithm produces an optimal solution.

4. Conclusion

e An algorithm for solving optimization problems with
inequalities as constraints is proposed. The algorithm
is based on the spinor algebra.

e The algorithm is used for constructing correct EA
algorithms of pattern recognition.

e For some classes of problems, criteria of feasibility
are obtained, which are formulated in terms of
solving a constrained optimization problem.

e Under the obtained conditions, the proposed method
significantly reduces the computational complexity
of synthesizing a correct algorithm.

Future work is related to the investigation of classes of
pattern recognition problems that can be efficiently
solved using the proposed approach.
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