Optimization Strategies
for Distributed Volume Ray Casting
in Heterogeneous Networks

M. A. Zhernovkov
Department of computational mathematics
and cybernetics
Ufa state aviation technical university
Ufa, Russia
e-mail: max.zhernovkov@googlemail.com

S. Bevier
Institute for information management
in engineering
Karlsruhe institute of technology
Karlsruhe, Germany
e-mail: soeren@bevier.de

Abstract’

In this paper the scheme of distributed calculations
system in the heterogeneous network for
visualization of voxel models is observed. Voxel
models are generated with usage of DICOM — files.
The volume ray casting algorithm is used as 3D —
visualization algorithm. Optimization strategies and
methods for visualization acceleration and the
quality of resulting picture are observed.

1. Introduction

Nowadays in medicine a wide variety of scanning
devices are used (such as scanners of computer
tomography) for the diagnosis of patients. These devices
scan certain parts of the patient’s body and produce slices
of images as standardized DICOM-files. Specialists can
use this data for the diagnosis and analysis of patient’s
state. Or, for research, modern computer technologies
allow visualizing this data in a 3D-space as voxel models.
This approach allows the specialist an opportunity not
only to study flat pictures, but interact with the whole
model in a real-time: to see the model from the different
angles, to do slicing, to manipulate individual parts of the
model and much more. The process of analysis and
research becomes much more convenient, affordable,
complete and effective through this approach and the
functional features of the software. The main problem of
voxel models visualization is the speed of visualization.

Proceedings of the 12 international workshop on
computer science and information technologies
CSIT°2010, Moscow — Saint-Petersburg, Russia, 2010

W. Schotte
Institute for information management
in engineering
Karlsruhe institute of technology
Karlsruhe, Germany
e-mail: wolfgang.schotte@kit.edu

A. R. Gafarov
Department of computational mathematics
and cybernetics
Ufa state aviation technical university
Ufa, Russia
e-mail: arthur.gafarov@gmail.com

The main approach to speed-up the visualization is the
creation of the distributed calculations system. Nowadays
most distributed systems are based on the cluster model.
The disadvantages of cluster models are the following:
high cost, relatively narrow focus in the use, difficulty in
scaling, difficulty in maintenance. Instead of the cluster a
local network of computers can be used in the medical
facility to do distributed calculations. The local network
can be scaled more easily (computers can be just added
or deleted from the network), it is easier to maintain it
(only the proper configuration of the network and
computers is needed to keep the system operable), it is
more wide in use than cluster (computers of local
network can be used not only to do distributed
calculations but also for the needs of the stuff), it is not so
expensive as cluster.

2. Problem statement

The goal is to create the distributed calculations system
using local heterogeneous network of computers and the
3d-visualization algorithm to reach the speed of
visualization in a real-time. As the 3D-visualization
algorithm the modified volume ray casting algorithm is
used. This algorithm is based on the algorithm described
in [1] and implemented in the LESC (Lifecycle
Engineering Solutions Center) at the KIT (Karlsruhe
Institute of Technology). The goal is divided into the
following tasks:

* Development of the distributed calculations system;

e Integration of the volume ray casting algorithm into
the developed system;

Optimization Strategies for Distributed Volume Ray Casting in Heterogeneous Networks

170

® Development of the optimization strategies and
algorithms for the effective operation of the system,

The problems are the following:
e Tack generation algorithms;

® The algorithms of distributing the amounts of
calculations between computers according to their
calculating power;

® Mechanisms and algorithms for tracking the
computer’s available memory and the memory
needed to do calculations;

® Tracking of bandwidth of the network parts;
o LatencyI tracking in the network.

Mathematically the task can be represented as a
distribution problem of linear programming [5]. It can be
formulated as follows.

The visualization area has M points (pixels). Consider the
visualization area as set H. N workers are available. Each
worker has its own limited amount of memory v; (f = 1,
-.-» N). Consider p; — the memory, that is needed to store
the i-th point (i = 1, .., M). Consider that

Zj,.v:l V& erg Pj-¢; — the time of visualization of the
7

i-th point by j-th worker. Each worker j can have a set of
points L; (L; C H) of the initial area. Then the time of
visualization 7} of the set L; by the worker j will be the
sum of values cy€ L;, and the used memory K; of the
worker j will be the sum of values p,e L;. Then the goal
of optimization task will be to fill the sets L, sivy Loy BY
the points of set H in such a way to fulfill the following
conditions:
1) Ly 0Dy) i, i B ="H;
2) Yij=1,...Nj=1,...Np L r Li=g

3) X7, > min;

4) Zj.‘;ll(j—)max.

However, the task cannot be solved by accurate methods
because of incomplete of information on each iteration
step. The system cannot know all values ¢ij because of
changing the scene parameters. Because of that the
heuristic methods are used to solve the problems and to
reach the goal.

3. Implemented Algorithms

3.1. The Distributed Calculations System
Scheme

The distributed calculations scheme is based on the URay
Framework approach described in [2] (pic.1).

When user changes the scene parameters (camera
position or rotation, threshold density, etc.), the GUI —
events are generated. After this the requests for
visualization of the next picture are sent to the Task
Manager, which generates the tasks for the Calculating

nodes. Each Calculating node calculates the task and
sends the results of the calculations to the Assembly
node. Assembly node generates the resulting output
picture and sends it to the Display

s st e
o s

=y 5
e
-

.= ¥ $ 4

M

| owata
! odeuers |

Fig. 1. The distributed calculations system scheme

3.2. Calculating nodes memory state
tables generation

Each Calculating node contains an image of the whole
visualized model. The image is loaded into the memory
of the Calculating node in the following cases:
Calculating node was added into the network or the user
has changed the visualized model. After each calculation
process the node generates a table about its memory state
based on the visualized model image and voxels that
were needed to make calculations. Each voxel has three
states:

® Voxel was in the memory of the Calculating node,
but wasn’t used during the calculations;

e Voxel was needed to do calculations, but wasn’t in
the memory of the Calculating node;

® Voxel was needed to do calculations and it was in
the memory of the Calculating node (in this case the
amount of accesses to the voxel is recorded).

3.3. Dividing the calculating nodes
into the classes

All Calculating nodes are divided into two categories:
active and non-active. Active nodes are used to make
calculations for the generation of the resulting picture.
Non-active nodes are nodes with bad characteristics (big
latency, etc.) and they are not used to make calculations
until their characteristics become better. But if during the
process of distributed calculations the characteristics of
the non-active Calculation node will become better, then
it can be set as an active node, It is also possible to move
nodes from one class to another.

Calculating nodes
classes

/4 Y

Fig. 2. The Calculating nodes classes

Workshop on computer science and information technologies CSTT’2010, Moscow — Saint-Petersburg, Russia, 2010

171

3.4. Tasks generation for the calculating
nodes

On each iteration step it is necessary to visualize a certain
number of lines of the visualization area.

Fig. 3. The visualization area with M lines N pixels
each

The task for each Calculating node has the following
structure: the number of the first line to make calculations
and the number of the total lines to make calculations.

5 lines starting from 1st

Fig. 4. An example of the task for the Calculating
node

3.5. Latency tracking in the network

During the operation of the system the latency of each
Calculating node V; is measured. After this the average
latency time K in the network is measured and for each
'Calculating node its latency is compared with the value
K. If V; > K * 1.5, then the Calculating node’s class will
be set as non-active. Otherwise, the node’s class will be
set as an active, if it was set as non-active earlier, or its
class doesn’t change. The factor 1.5 is chosen
empirically.

3.6. Distributing the amounts of calculations
between calculating nodes according to their
power

Each Calculating node measures its calculating time T;
after each iteration step. After the generation of the
resulting picture the average calculations time is
calculated. On the next tasks generation process,
performed by the Task Manager, the tasks are changed in
the following way: if the time of calculations of the
Calculating node was less than the average time, then the
amount of lines for the calculations increases by M.
Otherwise, it decreases by M. M — is the constant, chosen
empirically and is equal 5% of the total amount of lines
of the visualization area.

3.7. Preprocessing of the calculating nodes

When the new Calculating node is added into the network
its class is set as non-active. After this its preprocessing is
initiated. During that process a part of the visualized

model is “downloaded” into the memory of the
Calculating node. This allows the amount of artifacts in
the resulting picture to be reduced when the node’s class
will be set as an active. After this the node’s class is set
as an active and the node is involved into the distributed

calculations process. The “downloading” is based on the
memory state tables of the node and test tasks.

3.8. Active calculating nodes memory
management

When the calculations are done by the Calculating node
the following procedures based on its memory table are
done:

e The amount of memory needed to store missing
voxels is calculated;

e If the amount of memory needed to store missing
voxels exceeds the amount of free memory of the
Calculating node then the deletion of unused data is
initiated;

e The missing data “downloading” to the memory of
the Calculating node is initiated.

4. Results

The GUI (Display) and the Assembly node are combined
in one application at the moment.

The GUI of the system is shown on the next picture:

Fig. 5. The system’s GUI (Display)

The Task Manager and the Calculating node are console
applications.

The system was tested on the real data (human skull)
with the following parameters of the model:

e Model’s size — 86 Mb (46151728 voxels);
e Visualization area — 800*600 pixels.

The Calculating node (each) and network parameters are
the following:

e Network bandwidth — 1 Gbps;
e 16 Gb of RAM;

e 4 CPU, 2.2 GHz each.
The graph acceleration (times)/number of Calculating
nodes is shown on the next picture:

Optimization Strategies for Distributed Volume Ray Casting in Heterogeneous Networks

172

§ 10 12 17 13 14 15 14 17 18 18 23 2

Fig. 6. The graph acceleration (times)/number
of Calculating nodes

The horizontal axis represents the number of active
Calculating nodes (all the same), vertical axis — the
acceleration (in times). The red dotted line represents
perfect case when the acceleration is linear dependent on
the number of Calculating nodes. The blue line represents
dependency in our system. The acceleration practically
reaches its maximum when the number of Calculation
nodes equals 20. There’s no acceleration after this,
because the performance of the system depends not on
the calculating power, but on the network properties and
the speed of transferring the data, The preprocessing time
of the first Calculating node equals approximately 300
seconds and the amount of transferred voxels during the
first test iteration cquals 2828483 (6% of 46151728
voxels). It is necessary to say, that the time of
preprocessing and the amount of transferred voxels
decreases when the number of Calculating nodes
increases. However, the amount of artifacts in the
resulting picture increases when the number of the
Calculating nodes increases. The next picture shows the
system’s GUI and the resulting picture of the visualized
model after the preprocessing of the Calculating nodes
and changing camera rotation. The amount of the
Calculating nodes equals 3.

T S

Frkenin

|

]

T [
i

Fig. 7. The system’s GUI. Three active Calculating
nodes are in the network

5. Conclusions and future work

In this paper we have described the principles and
algorithms that we used to build the prototype of
distributed calculations system in the local heterogeneous
network of computers. The system scheme is based on

the URay Framework scheme [2] and the optimization of
the systems operation is done using the heuristic
algorithms. The system was tested on the real data. The
results of the system performance are shown in chapter 4
(Results). This work is a part of the project of the LESC
(Lifecycle Engineering Solutions Center) in the KIT
(Karlsruhe Institute of Technology) and it is still under
development. The most important areas for the future
work are these:

. Improving the algorithms of distributing the memory
data about the whole visualized model between
Calculating nodes based on their memory tables;

* Implementing more effective and flexible algorithms
of task distribution between Calculating nodes;

e Implementing the mechanism of rendering in a low-
resolution and optimization strategies based on this
mechanism;

e Transferred data compression algorithms;

* Implementing the algorithms of network’s parts
bandwidth evaluation;

e Implementing the algorithms of preliminary analysis
of the scene before tasks generation;

e Improving and implementing new algorithms of
analysis the Calculation’s node possibility to be set
as an active.

References

1. Marmitt G., Kleer A., Wald I., Friedrich H., Slusallek
P. “Fast and Accurate Ray-Voxel Intersection
Techniques for Iso-Surface Ray Tracing”. Stanford,
USA. November 16-18, 2004.

2. Repplinger M., Offler A.L., Rubinstein D., Slusallek
P. “URay: A Flexible Framework for Distributed
Rendering and Display”. Computer Graphics Group,
Saarland University, Germany, Technical Report TR-
2008-01. December 19, 2008.

3. Wald I, Benthin C., Dietrich A., Slusallek P.
“Interactive Ray Tracing on Commodity PC Clusters
- State of the Art and Practical Applications”.
Saarland University, Germany, 2003, pp 499-508.
(Lecture Notes on Computer Science 2790,
Proceedings of EuroPar 2003).

4. Cedilnik A., Geveci B., Moreland K., Ahrens J.,
Favre J. “Remote Large Data Visualization in the
ParaView Framework”. Heirich A., Raffin B., Santos
L.P. (eds.) editors. Eurographics Parallel Graphics
and Visualization 2006, pp 162-170, May 2006.

5. Sircova E.D. “Mathematical methods in the planning
and management of construction production”.
Tutorial, M., «High school», 1972, pp 265-293.

6. The DICOM standard (http://medical.nema.org/)
7. The BOINC system (http://boinc.berkeley.edu/)

Workshop on computer science and information technologies CSIT*2010, Moscow — Saint-Petersburg, Russia, 2010

173

