Situational-Oriented Databases: The Concept of XML Data
Managing Based on Dynamic DOM Objects

A. S. Gusarenko
Department of Computer Science and Robotics
Ufa State Aviation Technical University
Ufa, Russia
e-mail: valter-hartman@mail.ru

Abstract'

Management of the XML data associated with states
of dynamic model in situational-oriented databases
is considered. The concept of dynamic DOM ob-
jects which are automatically created, loaded, de-
stroyed in the course of change of current states of
dynamic model is offered. Means of dynamic DOM
objects specification by means of the DOM ele-
ments associated with states of dynamic model are
offered. Specifications of loaded and saved XML
contents by means of data sources and data receiv-
ers defined in dynamic model are discussed.

1. Introduction

Now in the field of information technologies the approach
to development of information systems on the basis of
direct use of models of high level of abstraction (Model-
based, model-driven engineering) [1-3] actively devel-
ops. Situational-oriented databases, in which XML data
associated with states of the built-in dynamic model are
processed in a context of model current states, can be
considered in the tideway of this approach [4, 5]. Situ-
ational-oriented databases can form a basis of the internet
applications providing dynamic formation of content ac-
cording to current situation [6-8]. In this connection the
organization of processing of the XML data associated
with current states of dynamic model, discussed in this
article are important.

In situational-oriented database includes the following
components (Fig. 1):

¢ HSML (HSM Library) is the library of dynamic
models containing a set of the Hierarchical Situ-
ational Models in the form of transition graphs hier-
archy with finite states number (Finite State Model);

e CSM (Current States Memory) is the memory of cur-
rent states of dynamic models;

' Proceedings of the 14™ international workshop on
computer science and information technologies
CSIT°2012, Ufa — Hamburg — Norwegian Fjords, 2012

V. V. Mironov
Department of Computer Science and Robotics
Ufa State Aviation Technical University
Ufa, Russia

e-mail: mironov@list.ru

e ADM (Associated Data Memory) is the memory of
the XML data associated with states of dynamic
model;

e AFL (Associated Functions Memory) is the library of
the data processing functions associated with dy-
namic model states;

e HSMI (HSM Interpreter) is the interpreter of dy-
namic model which in response to external query O
forms answer R by processing of some dynamic
model HSM from HSML on the basis of tracking of
HSM current states kept in CSM, processing the as-
sociated data from ADM and executing the associ-
ated functions from AFL.

Q —» HSMI — R

HSML
/ N

CSM ADM AFL

Fig. 1. Architecture of situational-oriented database

When using situational-oriented database on a Web
server as a basis for the internet application, the query O
is the set of parameters received together with URL (for
example, as form parameters in the POST mode), and the
result R is the answer HTML code sent to a client. Query
parameters specify a processed dynamic model and the
necessity of change of its current states.

On Fig. 2 it is given an example the dynamic HSM
model. The root state sta:S0 symbolizing model as a
whole, contains three child elements: two definitions of
XML documents from ADM and one sub-model from
HSML. The first document doc:X1 is the X1.xml/ file, and
the second one doc:X2 is the X2.xml file, both from the
XML folder in ADM. The sub-model sub:M defines two
states sta:S1 and sta:S2 which are child states for a parent
state sta:S0. In turn child members of states sta:51 and
sta:52 contain (1) transition elements jmp:S2 and jmp:S1
providing change of a current states, and (2) action ele-

Workshop on computer science and information technologies CSIT"2012, Ufa - Hamburg — Norwegian Fjords, 2012

61

ments act:Al and act:A2 providing executions of certain
actions in the appropriate states.

In the course of interpretation of action elements the
AFM functions associated with them are executed to pro-
vide processing of XML documents from ADM. In par-
ticular, DOM objects creation, XML documents loading,
contents XSL transformation, transformation result send-
ing as query result can be provided. Processing of the
associated data, thus, is programmed in the associated
functions from AFM being outside of HSM that compli-
cates understanding of logic of data processing. Specifi-
cations of processing of XML documents can be distrib-
uted on various elements of HSM. For example, in some
state XML document loading is specified; in one of the
sub-states of this state XML document modification is
specified; in other sub-state saving of changes is speci-
fied; in the third sub-state formation of output result for
sending to the client is specified. It is necessary to ana-
lyze jointly some functions associated with several states
to understand logic of this processing. Therefore would
be the useful if the logic of processing of XML docu-
ments from ADM could be specified explicitly in HSM.

(i1 X2 path = "XMUX2.xml"

g Al pass="2"

EXs A2 pass = "2

Fig. 2. Diagram of dynamic model including defini-
tions associated with XML documents

DOM objects. DOM (Document Object Model) [9] is the
well-known platform independent object-oriented inter-
face for access to the documents XML, XHTML, HTML.
The technology of processing of XML data on the basis
of DOM provides DOM object creation, external XML
document loading, document manipulation, document
saving. Considering great opportunities for DOM tech-
nology, its flexibility and wide use, we will try to solve
the considered problem on the basis of DOM.

Thus, we would like to give HSM developers opportunity
to specify the DOM objects associated with current states
of dynamic model. We would like, that during HSM in-
terpretation according to these specifications DOM ob-
jects were automatically created. The appropriate XML
data shall load automatically in DOM objects from ADM.
DOM objects shall become available to processing in

other parts of model corresponding to current states, The
necessary XML contents of DOM objects shall remain
timely, and unnecessary contents shall be deleted. Thus
we would like to give opportunity to specify in HSM
conversion of the XML data containing in DOM objects.
For example, the developer could specify for some state
of model that XML data of the associated DOM object
shall be transformed according to a certain XSLT style
sheet. Objects with similar behaviour we will call dy-
namic DOM objects.

2. The dynamic DOM objects concept

DOM elements. So, during interpretation of a dynamic
model the DOM objects associated with states of a dy-
namic model and available to processing from other parts
of model shall be created automatically. For this purpose
we will provide in dynamic model special DOM elements
within which sources of XML data can be specified. Re-
spectively in the course of interpretation of dynamic
model we will provide the appropriate processing of the
specified DOM elements: DOM objects creation and
loading when parent states become current; DOM objects
remove when parent states cease to be current. It will
allow to process the XML data associated with current
statuses, addressing to DOM objects from the functions
given in actions of a current state. We expect that labor
input of programming as the routine of preparation and
loading of DOM objects is laid to the interpreter thus
shall decrease.

For implementation of this idea it is necessary conceptual
studies of a number of questions: how to create DOM
objects; how to load XML data; in what states DOM ob-
jects are available to processing; how to delete DOM
objects and how to save in ADM their XML contents.

a

& D1 type = "dom" method = "copy" b

5
F1 type = "func" method = "copy" €

Fig.3. Assignment of XML data sources

t

XML data sources. Some opuons of XML data loading
in the DOM objects created in case of interpretation of
DOM elements can be offered: from an external XML
file; from other DOM object of model; as result of some
function, etc. On Fig. 3 it is shown, how various options
of data sources are represented on the model diagram.
The symbol of \dorm represents a DOM element, a name
and attributes of an element are specified to the right of
the symbol (the DOM elements dom:D1, dom.D2,
dom:D3 are specified on Fig. 3). The symbol of data

source EEX is attached to a DOM element as a child

Situational-Oriented Databases: The Concept of XML Data Managing Based on Dynamic DOM Objects

62

member and specifies loading of XML data in the DOM
object generated by a DOM element. In turn, attributes of
a data source element specify, XML data from where
undertake.

Loading from extermal XML file. Fig. 3, a shows a
fragment of the model diagram on which for a DOM ele-
ment the data source in the form of the XML document
from ADM is specified. The attribute type = "doc" speci-
fies that it is necessary to load the XML document from
ADM, and the data source name X1 refers to doc:X1 defi-
nition. The attribute method = "copy"” says that contents
of the document doc:X1 shall be copied entirely in the
created DOM object. Thus, when processing the element
dom:D1 the DOM object D1 will be created, and when
processing element src:X1 the file X1.xml will be loaded
into the DOM object D1.

Loading from another DOM object. Fig. 3, b shows a
fragment of the model diagram on which for a DOM ele-
ment the data source in the form of the reference to other
DOM element is specified. To it points the attribute type
= "dom", i. e. the data source name D1 refers to dom:D1
definition. It is supposed that by the time of element
src:D1 processing the DOM element dom:D1 is already
processed, 1. e. the DOM object D1 is created and loaded.
The interpreter addresses to DOM object D1 and copies
its XML contents in new DOM object D2.

Loading from a function. Fig. 3, ¢ shows a fragment of
the model diagram on which for a DOM clement the data
source in the form of the function returning as result a
line of XML data is specified. To it points the attribute
type = "func”, i. e. the data source name DI refers to
function from AFL. In the course of processing the inter-
preter calls the specified function and loads returned re-
sult into the created DOM object.

Leading with filtering. In actual practice often it is re-
quired not only to copy XML data from data source, but
also to execute data transformation. For example, often it
is required to filter data, i. e. to load into DOM object a
certain part of the data, satisfying to some conditions. On
Fig. 4 the filtration for the data source in the form of the
XML file from ADM is illustrated. In the dynamic model
on Fig. 4, a in a root state sta:S are defined both XML
document doc:X1, and the element dom:D3 in which
doc:X1 loading with filtering is provided. The data source
src:X1 has the attribute method = "cut" specifying that a
certain sub-tree will be derived from the initial XML
document. The additional element, field and value attrib-
utes are intended for the specification of a condition of
filtering. The element attribute contains XPath-
expression which defines a set of nodes in a XML tree
one of which will be a root of Joaded sub-tree. The field
attribute contains XPath-expression which defines in sub-
tree a checked XML element or attribute. The value at-
tribute contains demanded value. In this example it is
required to load into DOM object sub-tree, beginning in

the element el which k1 attribute matters "/23". On
Fig. 4, b the model of the XML data doc:X1 in the graphic
notaticn [11] is provided. The root XML element EO can
contain some child XML elements el, each of which con-
tains the kI key attribute (identifier) and the al (non-key)
attribute. Thus, XPath-expression YEO/el’, specified in
the efement attribute of a source src:X1, addresses a set of
all XML elements el; the field attribute addresses in el
the k1 XML attribute; the value attribute sets for it re-
quired '/23' value. During dom:D3 processing the inter-
preter addresses to src:X1 source, touches the XML ele-
ments el, finding single at what the kI XML attribute has
required '123' value, and loads the appropriate sub-tree in
DOM object. As a result in DOM object D3 the XML
data appropriate to model provided on Fig. 4, ¢ will be
loaded.

element = "/E0/e1"
a field = "@k1"
valug ="123"

@ dom:D3

el el
—m k1 k1="123"

b al c al
Fig. 4. BOM object loading with XML data filtering

Loading with transformation. Generally conversion of
XML data when loading can be considered as XSL trans-
formation of the data source XML document, and for a
solution the XSLT technology can be used (Fig. 5). In
this case the data source element contains the following
attributes: the method = "xs/t" attribute specifying need of
XSL transformation; the stylesheet attribute referring to
the used style sheet; the params attribute containing the
list of global parameters for transmission to the style
sheet.

a “—EOE X1 method = "xslt"
stylesheet = "doc:T1"

params = "123"
dociXl s . docT1
T [& = dom:D4
Lep of ($prm -{} g " Q;;ED
k1 - A
b al c L. o

Fig. 5. DOM object loading with data transformation

Workshiop on computer science and information technologies CSIT'2012, Ufa — Hamburg — Norwegian Fjords, 2012

63

Processing a data source element, the interpreter reveals
need of XSL transformation, loads the style sheet, trans-
fers global parameters, executes transformation and loads
result of transformation in DOM object.

In an example in the Fig. 5 it is shown, how by means of
XSLT the loading task with filtering (as in the previous
example, see Fig. 4) is solved. The conceptual model of
XSL transformation of XML data (Fig. S, b) is provided
in the graphic notation [11]. Templates of transformation
specify element el search at which the kI attribute is
equal to value of the global prm parameter, and output of
the found element together with its sub-tree as result of
transformation.

dom:D5
tooxt %@ doc:X2 |
oc: ==
B g e o

’ L{D el " K1 o,
P> el al ’
g k2 &2 @

k1
a e a2
; Le a p e a2 . -

@D s
(i X1 path = "XML/X1 xml"
(057 X2 path = "XML/X2 xml"

€X Y1 method = "merge"
parentDoc = "doc; X1"
parentElement = "/E1/e1"
parentField = "@k1"

d childDoc = "doc: X2"

childElement = "E2/e2"

childField = "@k1"

Fig. 6. DOM object loading with data merging

Loading with XML data merging, In more difficult
case it can be demanded to load in DOM object the XML
data received from several XML documents. For exam-
ple, for entity set the general information, containing in
one document, it is necessary to add the detailed informa-
tion containing in other document. In the Fig. 6 such data
source providing merge of XML documents is illustrated.
The model of the first of merged documents which con-
tains general information and represents itself as the par-
ent document, is provided on the Fig. 6, a. The model of
the second of the merged documents, containing detailed
information and representing itself as child, is given on
Fig. 6. b. The model of the resultant document loaded
into DOM object, is given on Fig. 6, c. The appropriate
fragment of a dynamic model specifying merge of two
documents in loading process of DOM object D5, is given
in the Fig. 6, d. The data source element has the aftribute
method = "merge™ specifying that XML data loaded in
DOM object shall be created by a way of merge of two
XML documents. These documents are set by the par-
entDoc attribut (the parental document) and childDoe

attribute (the child document). Other attributes set XPath
expressions specifying features of merge of documents:

® ParentElement specifies a set of XML elements to
which the sub-trees taken from the child document
will be attached in the parcnt document;

® Parentfield specifies memberwise from the previous
set (parentElement) the value used for identification
of the attached sub-tree;

® ChildElement specifies in a child document, the set of
elements which, together with their sub-trees are used
to copy to the parent document;

® ChildField specifies for each element from the previ-
ous set (childElement) the value used for identifica-
tion attached sub-tree.

During source element processing the interpreter ad-
dresses to the parent document and for each its XML
clement of the parentElement type finds in the child
document all corresponding to it a childElement type
XML element such that parentField and childField values
match. The found elements together with the sub-trees are
copied in the parent document as children of the proc-
essed XML element parentElement.

Saving of XML data of DOM objects. XML contents of
DOM objects can be changed in the course of interpreta-
tion (for example, according to request of the user), and
then can be demanded to save changes in ADM. There-
fore, it is necessary to provide means of saving of con-
tents of DOM objects.

Aga® X2 method = "cut” target = "insert"
element = "/EQ/e1" field = "@k1"
value = "123" targElement = "/EQ"

B
X3 method = "xslt" target = "update”

stylesheet = "doc:T2" targElement = "/EQ"
largField = "@k1" targValue = "123"

Fig. 7. Data receivers for DOM object content saving

Data receiver. As saving of DOM object contents is re-
verse in relation to DOM object loading, the appropriate
element of model called data receiver was provided. For
receiver representation on the chart of model the charac-
ter 82 is used. (It same as the source character, but has
an opposite direction and rcv label). The element is illus-
trated on Fig. 7 where it provides saving of contents of
DOM objects dom:D1, dom:D2 and dom:D3 in target
XML documents doc:X1, doc:X2, doc:X3 respectively,

As well as in data source, the method attribute specifies.
which data of DOM object are required to be saved: the
attribute method = "copy™ means that is necessary to save

Situationai-Oriented Databases: The € oncept of XML Data Managing Based on Dynamic DOM Objects

64

XML contents entirely; the attribute method = "cut" or-
ders to save a certain XML sub-tree from DOM object;
the attribute method = "xslt" commands to save result of
XSL conversion of contents of DOM object.

The target attribute specifies rules of placement of saved
data in the target document. For example, the attribute
target = "create” means that is necessary to rewrite con-
tents of the target document (if such document already
exists, it shall be replaced with the created one). The at-
tribute target = "insert" orders to insert saved XML data
into a tree of the target document (the path to a parent
member of the target document shall be specified). The
attribute target = "update"” commands to replace with
saved XML data some sub-tree of the target document
(the path to this sub-tree shall be set).

Visibility of DOM objects in model. Let's discuss visi-
bility of DOM objects: from what parts of a dynamic
model the DOM objects generated by these or those
DOM elements are available to processing. The response
depends, {irst, on number of pass of interpretation, sec-
ondly, from a relative positioning in model of a DOM
element and a point of processing of the appropriate
DOM object.

Dependence on interpretation pass. Here we assume
possibility of multi-pass interpretation of a dynamic
model when the interpreter several times processes a dy-
namic model by the recursive bypass of the current tree of
mode] within an interpretation cycle. On the first (main)
pass of interpretation changes of current states are fixed
also the DOM objects associated with current states are
created. On the subsequent (additional) passes elements
of the fixed current statuses are only processed. There-
fore, the relative positioning of elements in model influ-
ences visibility only on the main pass, and on additional
passes all DOM objects created on the first pass, are
available ("are visible") from any element of a current
state.

ETsd A3 pass="1"

domE)l

EEd A4 pass="1"
ETsd A5 pass="1"

EEd A6 pass="1"

Fig. 8. Visibility of DOM objects in dynamic model

Influence of a relative positioning of elements. On the

main pass the interpreter creates DOM objects when

processing the corresponding DOM elements. The DOM
object is visible from those elements of model which are
processed after processing of the appropriate DOM ele-
ment, and are respectively invisible from those elements
which are processed before DOM element processing.
Therefore, visibility is defined by order of processing of
elements of model during interpretation. In a dynamic
model the set of the elements associated with some state,
is arranged; in the course of interpretation of a tree of
current statuses these elements are processed as their fol-
lowing. Let's consider some element of a dynamic model
which has siblings associated with the same status. It can
be preceding siblings or the following siblings. Respec-
tively, the considered element isn't visible to preceding
siblings and is visible to following siblings.

Fig. 8 shows the fragment of a dynamic model containing
hierarchy from three states (sta:SO, sta:S1, and sta:52)
with which three DOM elements (dom:D0, dem:D1, and
dom:D2) and six actions (act:AQ, ..., act:A6) are associ-
ated. The action act:A0 is processed on the second pass of
interpretation, and remaining actions are processed on the
first one. In act:A0 all DOM objects created on the first
pass are visible: dom:DO irrespective of a current state;
dom:D1 if a current state is sta:S1; dom:D2 if a current
state is sto:S2. Remaining actions are processed on the
first pass therefore from them only those DOM objects
which are created earlier are visible. So, the object
dom:DO is visible from the act:A2, ..., act:A6; the object
dom:D1 is visible from the act:A4; the object dom:D2 is
visible from the act:A6.

DOM objects contents processing. So, DOM objects
are created during the main pass of interpretation by
means of DOM elements. These objects are finally in-
tended for formation of output data which go to external
environment in response to input request. Such resultant
processing of DOM objects is, as a rule, carried out dur-
ing additional passes of interpretation.

Fig. 9 illustrates DOM object use on the second pass of
interpretation for generation of a tragment of the HTML
code. Tt is supposed that interpretation of model is carried
out on the Web server, and the result goes to the client
browser according to the HTTP protocol. The name
rev:Echo means that the receiver is the standard stream of
resultant data. The attribute "pass = "2" means that the
element is processed by the interpreter on the second
pass. The resultant HTML code is formed by XSL trans-
formation of XML contents of DOM object D3. And
though details of transformation are latent in the style
sheet doc:T3, the overall picture is quite clear from a dy-
namic model.

e,
Echo pass = "2" method = "xslt'

stylesheet = "doc:T3"

Fig. 9. Using DOM object for HTML code generation

Workshop on computer science and information technologies CSIT’2012, Ufa — Hamburg — Norwegian Fjords, 2012

65

3. Conclusion

In this paper. at a conceptual level (excluding the features
and capabilities of the implementation of the medium) is
proposed and investigated a possible approach for mani-
pulating XML data in a situationally-oriented databases,
based on dynamically created DOM objects.

The concept of dynamic DOM objects is based on a bind-
ing of DOM objects to states of a dynamic model. DOM
objects are created, loaded, processed, when the appro-
priate states of a dynamic model are current. In a known
approach it is reached by labor-consuming programming
of the functions called in action elements, associated with
states of a dynamic model.

The offered concept has the following features:

1) The DOM elements specifying DOM objects can be
bound to states of a dynamic model: the data source cle-
ments specifying loaded XML data, as well as the data
receiver elements specifying saved XML contents, can be
bound to DOM elements.

2) Automatic creation of DOM objects, as well as loading
of XML data with required conversion is executed during
interpretation for current states of a dynamic model.

As expected, implementation of the concept will allow
developers of dynamic models to specify the XML data
required in these or those situations, as well as methods of
obtaining XML data from different sources in the declara-
tive form.

Further researches in this direction are connected to pro-
gram implementation of the offered conceptual decisions
in the form of the appropriate additions in structure of a
dynamic model HSM and in algorithms of the interpreter
of dynamic models HSMI.

Acknowledgments

The research is supported by the Russian Fond of Foun-
dation Research grant Ne 10-07-00167-a.

References

1. Model Based Systems Engineering [Electronic Re-
source]. URL: http://mbse.gfse.de.

2. Model Based System Development [Electronic Re-
source]. URL: http://www.ru.nl/mbsd.

3. Model-Driven Engineering [Electronic Resource].
URL: http://en.wikipedia.org/wiki/Model-driven_eng-
ineering,

4. Mironov V. V., Ocynosa H. W., Shakirova G.R.
Situational-oriented databases: The concept, architec-
ture, XML-implementation / Vestnik UGATU: scien-
tific journal of Ufa state aviation technical university.
2011.V. 14, No 2 (37). P. 233-244.

5. Mironov V. V., Yusupova N. I, Shakirova G. R. Situ-
ational-oriented databases: external representation
based on XSL // Ibid. 2011 V. 14, No 4 (39). P. 200-
209.

6. Mironov V. V., Malikova K. E. Internet-applications
based on built-in dynamic models: The idea, concept,
security // Ibid. 2009. V. 13, No 2 (35). P. 167-179.

7. Mironov V. V., Malikova K. E. Internet-applications
based on built-in dynamic models: The architecture,
data structure, interpretation // Ibid. 2010. V. 14, No 1
(36). P. 154-163.

8. Mironov V. V., Malikova K. E. Internet-applications
based on built-in dynamic models: elements manage-
ment of user interface // Ibid. 2011 V. 14, No 5 (40).
P. 170-175.

9. Document Object Model (DOM) [Electronic re-
source]. URL: http://www.w3.org/DOM.

10. Simple API for XML [Electronic resource]. URL:
http://en.wikipedia.org/wiki/Simple_API_ for XML.

11.Mironov V. V., Yusupova N. I, Shakirova G. R.
Hierarchical data models: concept and implementation
based on XML. Moscow: Mashynostroenie, 2011.
453 p.

Situational-Oriented Databases: The Concept of XML Data Managing Based on Dynamic DOM Objects

66

