

The local search algorithm in polynomial neighborhoods for the linear packing problem

138

The local search algorithm in polynomial neighborhoods for

the linear packing problem

А.R. Usmanova

Department of Computer Science and Robotics

Ufa State Aviation Technical University

Ufa, Russia

e-mail: kfmn2004@mail.ru

А.P. Zemlyanov

Department of Computer Science and Robotics

State Aviation Technical University

Ufa, Russia

e-mail: zemlianovap@gmail.com

Annotation
1

The Bin Packing Problem can be found widely in

different branches of industry and technique. The

conception of solutions’ neighborhoods and the

ways of its construction are considered. The

undetermined algorithm of local search in the

proposed neighborhoods is offered. The computing

experiment performed on the difficult benchmark

problems taken from the OR-library is proved the

effectivity of the proposed way.

1. Introduction

Let us describe the Bin Packing Problem (BPP): the set

L={w1,w2,…,wn} of nonnegative weights of items and

positive number С – the bin capacity. Without loss of

generality let the item weights and bin volume will be

integer numbers. It is necessary to find such partition L

into the minimal number of disjoint subsets, that the sum

of weights in each subset does not exceed the bin capacity

C. This is NP-hard problem [1]. If we shall interpret the

set L as sizes or length of some items, not as the weights

and С as the length of the big object – stock, which will

be cut onto smaller items, then we can discuss the linear

cutting stock problem. The formal mathematical

definitions of these problems, obviously, are identical and

using the terms «cutting» or «packing» is the questions of

private preferences. In this paper mostly the terminology

of bin packing problem will be used.

Let us formulate one of mathematical definitions of BPP

[2]. We are given the set L={w1,w2,…,wn} of item

weights and n bins of capacity С. Let us assign each

item to one and only one bin, i.e. pack item to bin, so that

the total weight packed in any bin does not exceed the

capacity, and the number of used bins will be minimal.

We suppose that the bin containing at least one item is

used, otherwise bin is not used. Now let us introduce two

Proceedings of the 18
th

 international workshop on

computer science and information technologies

18
th

CSIT’2016, Czech Republic, Prague, Kunovice,

2016

binary variables. Let },...,2,1{},1,0{ nNiiy 

where






otherwise 0,

used isbin th -j if ,1

jy

and let Nji, }1,0{ ijx ,

where





otherwise ,0

j;bin into packed is itemth -i if ,1
ijx

Then we can formulate BPP as Integer Linear Program

(ILP):

 Minimize





n

j
yz

j
1

with respect to 



n

i
NjCiwijxjy

1
 ,

and Nj
n

i
ijx 


 ,

1
1 .

There are many algorithms for solving this problem both

exact and approximate have been proposed at the present.

Since NP-hardness of BPP the most interest are the

effective approximate algorithms, so as the simplest

heuristics and metaheuristics with using genetic and

evolutionary algorithms, taboo search method, simulating

annealing algorithms and others. One of the simplest

heuristics is First Fir method and its online variant for the

sorted list of item’s weights – First Fit Decreasing. FF

algorithm each item pack into the first bin with the fit

remaindered capacity. In the case if there are no fit bins

then item is packed into a new bin. The algorithm FFD at

first orders items in nonincreasing order. If the binary tree

is used for storing the data describing bins during the

algorithm execution and quick sorting is applied then first

fit algorithms requires O(nlogn) time.

In this paper the local search algorithm applied to the

initial solutions obtained by the greedy stochastic

heuristics that are non-deterministic versions of FFD

algorithm and described at [3,4] is considered.

Let the solution of some optimization problem can be

defined by vector x, the set of all feasible vectors satisfied

Workshop on computer science and information technologies 18thCSIT’2016, Czech Republic, Prague, Kunovice, 2016

139

to the problem constraints denote as X. Let it is necessary

to maximize some function)(xf on the set of vectors X,

i.e. we want to find such vector*, that)()(* xfxf 

for any Xx .

Let applying some operator op to the current solution x

lead to the new feasible solution y, denote this fact as

op(x)=y. Usually applying an operator to the solution

generates not one but some set of solutions that we shall

name the neighbourhoods of solutions and denote as N(x),

so we have op(x)=y, yN(x). The simplest algorithm can

be described as follows:

Algorithm L

1. To obtain the initial solution x
0
.

2. To set the current solution x=x
0

3. To construct the neighbourhood of solutions N(x)

4. To search such solution yN(x) that)()(yfyf  ,

yN(x)

5. To set the current solution x= y

6. If the halt conditions are satisfied then to terminate the

algorithm with result x , otherwise go to step 3.

In this article two ways of neighborhoods constructing are

proposed. The first one uses the removing one item from

one bin to another. The second is considered the items

swapping for different bins. Also there is three ways of

such swapping are considered.

The algorithm used for initial solution and just the local

search algorithm described below are non-deterministic,

depending on some parameter. This allows to reduce the

solution browsing in the neighborhood and therefore to

increase the performance of the algorithm.

In this paper the numerical experiment devoted to

investigation of the algorithm with different parameters

and to comparing it with its deterministic version.

2. The simple greedy heuristics

Algorithm RPEP − Random Permutation with

Equal Probabilities

This algorithm is the simplest and the most used when it is

necessary to obtain different initial solutions for one

problem. The set of all permutations of the items with

cardinality n! are considered. The element from this set

randomly chosen and packed by FF order accordingly the

chosen order of items.

The computational complexity of random permutation

modeling is)log(nnO , because for modeling of each of

vector component log n operations are required for

searching and removing items from the set N. It does not

exceed the computational complexity of FF algorithm, so

the complexity of RPEP algorithm coincides with FF and

equals to)log(nnO .

Algorithm RPP − Random Permutation with

Parameter

As in the previous case algorithm generates some random

sequence of item indices and then applies to it FF

algorithm. But unlike the first algorithm all possible

permutations are not equiprobable. At first items are

sorted in decreasing order. Then, during the packing

process, considering the next item, algorithm compares

the given parameter p with the value of the pseudo-

random variable uniformly distributed on [0,1]. The item

will be packed just in the case if parameter is greater of

this random variable. The process continues until all items

are packed. When we are considering items, the random

events, which are that the choose of the next item, are

equiprobable and independent, because that the single

scanning of item list is the scheme of Bernoulli trials.

Therefore, the single scanning of n items gives us the

mathematical expectation of packed items of equal to np.

So to pack all n items we will need an average of

n/np=1/p steps. In that way the computational complexity

can be estimated as: it required 1/p cycles, each of that

performs n operations of scanning items and log n

operations for each item when searching for bin. Because

the parameter p does not depend of the dimension of the

problem, the computational complexity coincides with the

complexity of FFD and equals to)log(nnO .

Algorithm RBP − Random Bin with Parameter

This algorithm does not modify the original order of the

items (sorted by non-increasing weights), but the strategy

of choosing the bin for each item becomes non-

deterministic. The simplest realizations of such a strategy

consists in choosing one of the feasible bins for a given

item, with the events consisting in the choice of each bin,

are equiprobable and form the collectively exhaustive

events. More interesting is the algorithm in which the

probabilities of bin choosing are not equiprobable and

depend on some parameter. When we execute the

assigning of the current item to the bin, we scan the bins

with suitable residual capacity in descending order. The

probability of that item will be packed to each bin is the

parameter of algorithm -]1,0(b . Under this strategy, the

choice of bin for packing is not a certain event, especially

if the parameter is close to zero, and a list of feasible bins

has a small length. If no bin is chosen, there are several

possibilities: to pack the item to any of feasible bins, for

example, to the first or to the last; put it in a new bin or

leave the item until unpacked and repeat the process until

all items will not be assigned to the bins. The advantage

of the first strategy is that in this case it is easy to estimate

the computational complexity of the algorithm and to

predict its behavior for small values of b. In the second

case, when values of b close to zero, it can result in very

bad solutions, where each bin is assigned to a very small

number of items and the value of the loss function will be

much worse than optimal. It is proposed to give

preference to the third strategy, which allows to obtain

solutions with a good enough value of the loss function.

The local search algorithm in polynomial neighborhoods for the linear packing problem

140

The disadvantage is that the computational time of the

algorithm will greater than using the first or second

strategy. When b=1 the algorithm is reduced to a

deterministic FFD, if after packing of each item bins will

be sorted in order of descending its residual capacity. The

computational complexity of the described above

algorithm is)()(2nOnmO  .

3. The Local Search Algorithm

The considered above simple heuristics, which has such

advantages as simplicity of implementation and small

computation time, also possess disadvantages. The most

significant of which is the inability to improve the

obtained solution. Therefore such algorithms should be

combined with other methods if they are applied for the

solving optimization problems. In particular, they should

used with the various iterative algorithms that

successively improve the solution. Here the local search

algorithm is proposed, which at each step considers a set

of neighboring solutions, the so called neighborhood of

the current solution. The solution delivering the maximum

of the criterion function is chosen from neighborhood as

the next solution. The process continues until there are

solutions belonged to the neighborhood better than the

current in relation to the criterion function.

The polynomial neighborhoods

To construct a neighborhood of solutions the current

solution is exposed some operators The first such operator

can be described by a triple op1(j1,j2,i1), indicating that the

item i1 is removed from the bin j1 to the bin j2. The set of

feasible solutions the can be obtained by using this

operator we denote as 1N . In average the number of

elements in neighborhood 1N will be about of

nmmnmm  , where m is number of used bins, and

n is the number of items. The advantage of applying this

neighborhood is that it may contain a solution that

improves the loss function, that is, reduces the number of

bins used. But the disadvantage is that this neighborhood

may be empty, when any movement of one item results in

an unfeasible solution. Therefore, searching the next

solution only at that neighborhood is not always possible,

and it is necessary to consider one more set of

neighboring solutions.

For this purpose let introduce the second operator

op2(i1,i2,j1,j2), the application of which to the current

solution means a swapping of the i1–th item from j1–th

bin with i2–th item from j2–th bin. The second

neighborhood 2N is the set of feasible solutions obtained

by the application of op2 to the current solution. In

average this neighborhood can contain about
2nmnmnmm  elements. Although this

neighborhood does not provide solutions with the better

values of the lost function than the current solution, but

the choosing of solutions from it allows to turn around in

the case when the set N1 is empty. In the early stages of

the algorithm development the next variants for swapping

items are considered:

 a random item from a bin to another random item

from the second bin (with equiprobability for the

number of items in each bin)

 item with maximal weight from bin to another item

with maximal weight from another bin

 item with minimal weight from bin to another item

with minimal weight from another bin

 item with maximal weight from bin to another item

with minimal weight from another bin

The computing experiment has shown that the best results

are obtained when the first or the second way are used.

Further, it was decided to apply just the first way to

construct a neighborhood.

We consider only feasible solutions in neighborhoods N1

and N2, so for each solution the restriction





n

i
NjCiwijxjy

1
 ,

holds.

For the time reduction of exhaustive search in

neighborhoods at first the search through the

neighborhood N1 is performed, and only if N1 is empty or

if N1 does not contain solutions better than the current

one, the search continues through the neighborhood N2.

So the common neighborhood of solutions can be

described as



 


otherwiseN

yfyandNifN
N

,

0)(: ,

2

11* ,

where f is the criterion function.

It is very important for this algorithm to look for a good

criterion function because the loss function values

coincide for the most of neighboring solutions. We

propose as the criterion function 12 f , where 1

– difference of weights i1-th and i2-th bins at the current

solution, and 2 – at the next solution, obtained by

removing item from bin i1 into bin i2. Speaking in more

detail these differences are evaluated as








n

i
iwijx

n

i
iwijx

11 21
1 for 1N or 2N and

1
2

1 21 1

)
1

(
1 1211

2

iw
n

i
iwijx

n

i
iwijx

iw
n

i
iwijxiw

n

i
iwijx

















if we consider the neighborhood 1N , and

Workshop on computer science and information technologies 18thCSIT’2016, Czech Republic, Prague, Kunovice, 2016

141

)(2

11

)
1

(
1

2121

212211
2

iwiw
n

i
iwijx

n

i
iwijx

iwiw
n

i
iwijxiwiw

n

i
iwijx

















for the neighborhood 2N .

Then at each iteration the next solution y* is such as
),()(Nyyfyf  . The advantage of this criterion

function is that its computation does not depend on the

dimension of the problem. We can say that thanks to this

function, the algorithm tends to "load" bins with great

weight and "unload" a bin with less weight. This makes it

possible to remove all the items from a previously used

bin and to improve the value of the loss function.

The halt condition for the proposed local search algorithm

is either reaching of lower bound
C

w

N

n

i
i

 1
0 (obviously

the optimal solution) or there are no in the neighborhood

N* the solutions with a positive value of the criterion

function. The second case means we have obtained the

locally optimal solution. Another halt conditions as the

restrictions of performance time or the iterations number

were also considered and finally the iterations number

restriction was included.

After the obtaining the locally optimal solution we can

generate a new initial solution by the algorithms

RPEP/RPP/RBP and repeat the local search. Let the

number of generations of initial solutions is l, then an

algorithm allows to obtain l locally optimal packings

(unless the global optimum is not reached). It is obviously

that increasing the parameter l increases the probability of

obtaining the global optimum. Let us describe the scheme

of the algorithm with parameter l.

 Algorithm LS

1. To generate an initial solution by RPEP/RPP/RBP

algorithm.

2. To search y* such as *),(*)(Nyyfyf 

3. If the loss function z(y*)=N0 then to terminate

algorithm

4. If 0)(* yf then step 5, otherwise to set *yx  and

step 2

5. To repeat steps 1-4 l times ant to terminate with result

x

The local search algorithm can also be made probabilistic.

For this purpose it is possible to consider not all solutions

in the neighborhood, but just some random sampling of

solutions from it. Let’s add to the algorithm a new

parameter lp that is the probability with which every

solution in N* will be included to this sample. The value

of this parameter should be defined experimentally. The

introduction of non-determinism in the local search

algorithm has a dual purpose: reducing the computing

time and obtaining the better (with respect to the loss

function) solutions than the solutions provided by the

deterministic algorithm. The first purpose is fairly obvious

– the number of scanning neighboring solutions at each

iteration will decrease by 1/lp times and, accordingly, the

time of solving the problem should decrease. The second

purpose reaching can be explained by such arguments:

probabilistic search has a less possibilities to be stuck in

locally optimal points. So obtaining more perspective

solutions with respect to the loss function is provided. It

should be noted that the local search algorithm was later

used as a part of more complex metaheuristic - tabu

search method [6,7]. And there the changing of parameter

p plays the role of the intensification procedure – p

increases, when search performs with improvement of the

criterion function, and decreases otherwise.

 4. Computing experiment

 Benchmarks

We have used 8 benchmark sets from the OR-library

proposed by Falkenauer[5], each set has 20 randomly

generated problems united by a common characteristic of

the source data. The Table 1 gives these characteristics for

each set.

Тable 1. Characteristics of benchmarks

№

set

n – number of

items

C –bin

capacity

Item weights

1 120 150 [20,100]

2 250 150 [20,100]

3 500 150 [20,100]

4 1000 150 [20,100]

5 60 100.0 [20.0,50.0]

6 120 100.0 [20.0,50.0]

7 249 100.0 [20.0,50.0]

8 501 100.0 [20.0,50.0]

These benchmarks are quite difficult and the solutions

obtained by the simple heuristic algorithms in most cases

far from optimal. The best known solutions are given for

all sets and were obtained by Falkenauer with a genetic

algorithm. In almost all cases, these solutions are

obviously optimal, because they coincide with a lower

bound. Table 2 gives an average loss function values (for

20 problems) – number of used bins. The benchmarks of

sets 5-8 are so-called triplets, an optimal solutions usually

there is exactly three items packed into each bin. The

triplets of the same set always have the same number of

used bin in the obvious optimal solutions.

Table 2. An average values of the best known number

of used bins.

№ set An average value of bin

1 49.15

The local search algorithm in polynomial neighborhoods for the linear packing problem

142

2 101.70

3 201.20

4 400.55

5 20.00

6 40.00

7 83.00

8 167.00

Computing experiment with determined and

probabilistic local search algorithms

This computing experiment was hold with purpose of

comparing the determined and probabilistic local search

algorithms described above.

The benchmark problems of set 1-8 were solved by the

local search algorithm with parameter p equals to 1%, 5%,

10%, 25%, 50% and 100%. With first four values of

parameter the local search algorithm is probabilistic and

scans in average 1/100 solutions in neighborhood, 1/20

and so on. If p=100% then the algorithm is an usual

determined local search algorithm. This experiment has

no purpose to define an optimal value of parameter l – the

number of algorithm runs, in all cases l set equal to 10.

Besides that the maximal iterations after each run was set

equal to 1000. The algorithm has Borland Delphi 7.0

code. Thorough all experiment Pentium Dual-Core, 2*2,7

GHz was used.

Table 3 contains the results of computing experiment. The

average gap with respect to the best known solution was

evaluated for 20 benchmarks from each set.

Table 3. LS results with parameter p

№ set

An average gap wrt the best known solution

p

0,01 0,05 0,1 0,25 0,5 1,0

1 0,6 0,4 0,15 0,15 0,03 0,05

2 1,4 0,65 0,4 0,45 0,4 0,4

3 2,7 2.75 2.65 2.65 2.55 2.55

4 2.65 1.55 1.55 1.6 1.5 1.9

5 1,95 1,0 1,0 0,85 0,45 0,25

6 2,25 1,0 0,95 0,45 0,1 0,05

7 1,35 0,5 0,5 0 0 0

8 0,8 0,35 0,35 0 0 0

As we have 10 runs of algorithms we take the best

obtained solution as final solution.

The next Table 4 gives an average solving time (in

microseconds) for one benchmark problem from all sets.

Table 4. An average solving time for LS algorithm

№ set

An average time (ms)

p

0,01 0,05 0,1 0,25 0,5 1,0

1 0,31 1,08 0,89 0,61 0,88 0,81

2 6,38 9,18 12,63 13,08 16,4

9

15,3

2

3 37,3 39,8 41,2 38,8 42,5 44,1

4 945 1003 1040 967 1765 2304

5 1,71 1,75 1,49 1,61 1,82 0,81

6 15 19 17 11 12 9

7 38,5 34,3 29,7 35,2 30,1 38,1

8 49,1 51,0 48,0 43,2 47,9 55,6

The results of computing experiment prove that the local

search algorithm obtains solutions in many cases close to

optimal in a reasonable time. The search performed

thorough non-determined neighborhood required less time

than the search using full neighborhood. The gap wrt the

optimum in many cases slightly worse or the same as the

gap when p=1.0. The advantage of the determined

algorithm in some cases can be explained by fact that

searching in probabilistic neighborhood we have a

significant deviations of loss or criterion function either

best side or worse side. Besides that we have noted that

when parameter p is small the loss function values have

the big gap wrt the best-known solution value. This fact

allows making a conclusion that the neighborhood should

not be too narrow. So using a small value of parameter p

is not effective. By other hand decreasing the number of

solutions in neighborhood by quarter (p=0.25) or half

(p=0.5) allows to obtain solutions close to optimum in a

less computing time than determined algorithm. In general

we can see that the best results were obtained for the

bench mark set number 4. It is benchmarks with a big

dimension, number of items n=1000 and with uniformly

distributed weights of items. There is no a significant

advantages of non-determined algorithm wrt determined

for the triplets in sets 5-8. But we can observe a curiosity

fact for triplets that the effectiveness of algorithm

increases with dimension increasing.

So the proposed local search algorithm can be

recommended for solving the problems with great

dimension and uniformly distributed weights of items.

Besides that this algorithm has a quite small computing

time and can be used as a part of more complicated

metaheuristics. In particularly author realized the tabu

search method using local search both in polynomial and

exponential neighborhoods [6,7].

5. Conclusion

1. In this paper Bin Packing Problem was considered

and some simple probabilistic heuristics for effective

solving it were described.

2. The local search algorithm using as initial solution

obtained by simple heuristics was proposed.

3. The definition of two neighborhoods with polynomial

power wrt problem dimension was given.

4. The convenient criterion function for solution

choosing in neighborhood with constant computing

time was offered.

Workshop on computer science and information technologies 18thCSIT’2016, Czech Republic, Prague, Kunovice, 2016

143

5. The computing experiment results are given. The

purpose of experiment was to estimate the

effectiveness of the proposed algorithm and to

investigate the algorithm behavior at various values

of the parameter responsible for the degree of non-

determinism of the algorithm.

References

1. Garey M.R. and Johnson D.S. Computers and

Intractability: A Guide to the Theory of NP-

Completeness. W.H. Frecman, San Francisco. 1979.

2. Martello S.,Toth P. Knapsack Problems, Algorithms

and Computer Implemetations. John Wiley and Sons

Ltd.- England, 1990.

3. Kochetov Y.A., Usmanova A.R. Probabilistic search

with exclusions for the packing problem in

containers.- Proceedings of the XII International

Conference Baikal, 2001, pp. 22-27.

4. Usmanova A.R. The probabilistic greedy heuristics for

the packing problem n containers.- Proceedings of the

Optim 2001. First All-Russian scientific-practical

conference on solving optimization problems in the

industry. St. Petersburg, 2001, pp.141-145.

5. Falkenauer E. A hybrid Grouping Genetic Algorithm

for Bin Packing. Journal of Heuristics, Vol.2, No

1,1996.- pp.5-30.

6. Usmanova A.R. Search in exponential neighborhood

solutions for linear packing problem. Proceedings of

the international conference "Information

Technologies for Intelligent Decision Making

Support", May 21-25, Ufa, Russia, 2013. Vol.2.

pp.189-194

7. Usmanova A.R. Structures of prohibitions list in the

method TS for packing task. Proceedings of the

international conference "Information Technologies

for Intelligent Decision Making Support", May 21-25,

Ufa, Russia, 2013. Vol.2. pp. 208-211

