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The Bin Packing Problem can be found widely in 

different branches of industry and technique.  The 

conception of solutions’ neighborhoods and the 

ways of its construction are considered. The 

undetermined algorithm of local search in the 

proposed neighborhoods is offered. The computing 

experiment performed on the difficult benchmark 

problems taken from the OR-library is proved the 

effectivity of the proposed way.    

1. Introduction  

Let us describe the Bin Packing Problem (BPP): the set 

L={w1,w2,…,wn} of nonnegative weights of items and 

positive number С – the bin capacity. Without loss of 

generality let the item weights and bin volume will be 

integer numbers. It is necessary to find such partition L 

into the minimal number of disjoint subsets, that the sum 

of weights in each subset does not exceed the bin capacity 

C. This is NP-hard problem [1]. If we shall interpret the 

set L as sizes or length of some items, not as the weights 

and С as the length of the big object – stock, which will 

be cut onto smaller items, then we can discuss the linear 

cutting stock problem. The formal mathematical 

definitions of these problems, obviously, are identical and 

using the terms «cutting» or «packing» is the questions of 

private preferences. In this paper mostly the terminology 

of bin packing problem will be used.  

Let us formulate one of mathematical definitions of BPP 

[2]. We are given the set L={w1,w2,…,wn} of item 

weights  and  n  bins of capacity С. Let us assign each 

item to one and only one bin, i.e. pack item to bin, so that 

the total weight packed in any bin does not exceed the 

capacity, and the number of used bins will be minimal. 

We suppose that the bin containing at least one item is 

used, otherwise bin is not used. Now let us introduce two 
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There are many algorithms for solving this problem both 

exact and approximate have been proposed at the present. 

Since NP-hardness of BPP the most interest are the 

effective approximate algorithms, so as the simplest 

heuristics and metaheuristics with using genetic and 

evolutionary algorithms, taboo search method, simulating 

annealing algorithms and others. One of the simplest 

heuristics is First Fir method and its online variant for the 

sorted list of item’s weights – First Fit Decreasing. FF 

algorithm each item pack into the first bin with the fit 

remaindered capacity. In the case if there are no fit bins 

then item is packed into a new bin. The algorithm FFD at 

first orders items in nonincreasing order. If the binary tree 

is used for storing the data describing bins during the 

algorithm execution and quick sorting is applied then  first 

fit algorithms requires  O(nlogn) time. 

In this paper the local search algorithm applied to the 

initial solutions obtained by the greedy stochastic 

heuristics that are non-deterministic versions of FFD 

algorithm and described at [3,4]  is considered.    

Let the solution of some optimization problem can be 

defined by vector x, the set of all feasible vectors satisfied 



 

 

Workshop on computer science and information technologies 18thCSIT’2016, Czech Republic, Prague, Kunovice, 2016 

 

139 

to the problem constraints denote as X. Let it is necessary 

to maximize some function )(xf on the set of vectors X, 

i.e. we want to find such vector*, that )()( * xfxf    

for any Xx .  

Let applying some operator op to the current solution x 

lead to the new feasible solution y, denote this fact as 

op(x)=y. Usually applying an operator to the solution 

generates not one but some set of solutions that we shall 

name the neighbourhoods of solutions and denote as N(x), 

so we have op(x)=y, yN(x). The simplest algorithm can 

be described as follows: 

Algorithm L 

1. To obtain the initial solution x
0
. 

2. To set the current solution x=x
0
 

3. To construct the neighbourhood of solutions N(x) 

4. To search such solution yN(x) that )()( yfyf  , 

yN(x) 

5. To set the current solution x= y 

6. If the halt conditions are satisfied then to terminate the 

algorithm with result x , otherwise go to step 3.  

In this article two ways of neighborhoods constructing are 

proposed. The first one uses the removing one item from 

one bin to another. The second is considered the items 

swapping for different bins. Also there is three ways of 

such swapping are considered.  

The algorithm used for initial solution and just the local 

search algorithm described below are non-deterministic, 

depending on some parameter. This allows to reduce the 

solution browsing in the neighborhood and therefore to 

increase the performance of the algorithm.  

In this paper the numerical experiment devoted to 

investigation of the algorithm with different parameters 

and to comparing it with its deterministic version.  

2. The simple greedy heuristics  

Algorithm RPEP − Random Permutation with 

Equal Probabilities 

This algorithm is the simplest and the most used when it is 

necessary to obtain different initial solutions for one 

problem. The set of all permutations of the items with 

cardinality n! are considered. The element from this set 

randomly chosen and packed by FF order accordingly the 

chosen order of items.  

The computational complexity of random permutation 

modeling is )log( nnO , because for modeling of each of 

vector component log n operations are required for 

searching and removing items from the set N. It does not 

exceed the computational complexity of FF algorithm, so 

the complexity of RPEP algorithm coincides with FF and 

equals to )log( nnO . 

Algorithm RPP − Random Permutation with 

Parameter 

As in the previous case algorithm generates some random 

sequence of item indices and then applies to it FF 

algorithm. But unlike the first algorithm all possible 

permutations are not equiprobable. At first items are 

sorted in decreasing order. Then, during the packing 

process, considering the next item, algorithm compares 

the given parameter p with the value of the pseudo-

random variable uniformly distributed on [0,1]. The item 

will be packed just in the case if parameter is greater of 

this random variable. The process continues until all items 

are packed. When we are considering items, the random 

events, which are that the choose of the next item, are 

equiprobable and independent, because that the single 

scanning of item list is the scheme of Bernoulli trials. 

Therefore, the single scanning of n items gives us the 

mathematical expectation of packed items of equal to np. 

So to pack all n items we will need an average of 

n/np=1/p steps. In that way the computational complexity 

can be estimated as: it required 1/p cycles, each of that 

performs n operations of scanning items and log n 

operations for each item when searching for bin. Because 

the parameter p does not depend of the dimension of the 

problem, the computational complexity coincides with the 

complexity of FFD and equals to )log( nnO .       

Algorithm RBP − Random Bin with Parameter  

This algorithm does not modify the original order of the 

items (sorted by non-increasing weights), but the strategy 

of choosing the bin for each item becomes non-

deterministic. The simplest realizations of such a strategy 

consists in choosing one of the feasible bins for a given 

item, with the events consisting in the choice of each bin, 

are equiprobable and form the collectively exhaustive 

events. More interesting is the algorithm in which the 

probabilities of bin choosing are not equiprobable and 

depend on some parameter. When we execute the 

assigning of the current item to the bin, we scan the bins 

with suitable residual capacity in descending order. The 

probability of that item will be packed to each bin is the 

parameter of algorithm - ]1,0(b . Under this strategy, the 

choice of bin for packing is not a certain event, especially 

if the parameter is close to zero, and a list of feasible bins 

has a small length. If no bin is chosen, there are several 

possibilities: to pack the item to any of feasible bins, for 

example, to the first or to the last; put it in a new bin or 

leave the item until unpacked and repeat the process until 

all items will not be assigned to the bins. The advantage 

of the first strategy is that in this case it is easy to estimate 

the computational complexity of the algorithm and to 

predict its behavior for small values of b. In the second 

case, when values of b close to zero, it can result in very 

bad solutions, where each bin is assigned to a very small 

number of items and the value of the loss function will be 

much worse than optimal. It is proposed to give 

preference to the third strategy, which allows to obtain 

solutions with a good enough value of the loss function. 
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The disadvantage is that the computational time of the 

algorithm will greater than using the first or second 

strategy. When b=1 the algorithm is reduced to a 

deterministic FFD, if after packing of each item bins will 

be sorted in order of descending its residual capacity. The 

computational complexity of the described above 

algorithm is )()( 2nOnmO  .  

3. The Local Search Algorithm  

The considered above simple heuristics, which has such 

advantages as simplicity of implementation and small 

computation time, also possess disadvantages. The most 

significant of which is the inability to improve the 

obtained solution. Therefore such algorithms should be 

combined with other methods if they are applied for the 

solving optimization problems. In particular, they should 

used with the various iterative algorithms that 

successively improve the solution. Here the local search 

algorithm is proposed, which at each step considers a set 

of neighboring solutions, the so called neighborhood of 

the current solution. The solution delivering the maximum 

of the criterion function is chosen from neighborhood as 

the next solution. The process continues until there are 

solutions belonged to the neighborhood better than the 

current in relation to the criterion function. 

The polynomial neighborhoods 

To construct a neighborhood of solutions the current 

solution is exposed some operators The first such operator 

can be described by a triple op1(j1,j2,i1), indicating that the 

item i1 is removed from the bin j1 to the bin j2. The set of 

feasible solutions the can be obtained by using this 

operator we denote as 1N . In average the number of 

elements in neighborhood 1N will be about of 

nmmnmm  , where m is number of used bins, and 

n is the number of items. The advantage of applying this 

neighborhood is that it may contain a solution that 

improves the loss function, that is, reduces the number of 

bins used. But the disadvantage is that this neighborhood 

may be empty, when any movement of one item results in 

an unfeasible solution. Therefore, searching the next 

solution only at that neighborhood is not always possible, 

and it is necessary to consider one more set of 

neighboring solutions. 

For this purpose let introduce the second operator  

op2(i1,i2,j1,j2), the application of which to the current 

solution means a swapping of the  i1–th item from  j1–th 

bin with  i2–th item from j2–th bin. The second 

neighborhood 2N  is the set of feasible solutions obtained 

by the application of op2 to the current solution. In 

average this neighborhood can contain about 
2nmnmnmm  elements. Although this 

neighborhood does not provide solutions with the better 

values of the lost function than the current solution, but 

the choosing of solutions from it allows to turn around in 

the case when the set N1 is empty. In the early stages of 

the algorithm development the next variants for swapping 

items are considered: 

 a random item from a bin to another random item 

from the second bin (with equiprobability for the 

number of items in each bin) 

 item with maximal weight from bin to another item 

with maximal weight from another bin  

 item with minimal weight from bin to another item 

with minimal weight from another bin  

 item with maximal weight from bin to another item 

with minimal weight from another bin  

The computing experiment has shown that the best results 

are obtained when the first or the second way are used. 

Further, it was decided to apply just the first way to 

construct a neighborhood. 

We consider only feasible solutions in neighborhoods N1 

and N2, so for each solution the restriction  





n

i
NjCiwijxjy

1
 ,  

holds. 

For the time reduction of exhaustive search in 

neighborhoods at first the search through the 

neighborhood N1 is performed, and only if N1 is empty or 

if N1 does not contain solutions better than the current 

one, the search continues through the neighborhood N2. 

So the common neighborhood of solutions can be 

described as 



 
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otherwiseN

yfyandNifN
N

,

0)(: ,

2

11*       ,                 

where f  is the criterion function. 

It is very important for this algorithm to look for a good 

criterion function because the loss function values 

coincide for the most of neighboring solutions. We 

propose as the criterion function 12 f , where 1  

– difference of weights i1-th  and i2-th bins at the current 

solution, and 2 – at the next solution, obtained by 

removing item from bin i1 into bin i2.  Speaking in more 

detail these differences are evaluated as 
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if we consider the neighborhood 1N , and 
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for the neighborhood 2N . 

Then at each iteration the next solution y* is such as 
*),(*)( Nyyfyf  . The advantage of this criterion 

function is that its computation does not depend on the 

dimension of the problem. We can say that thanks to this 

function, the algorithm tends to "load" bins with great 

weight and "unload" a bin with less weight. This makes it 

possible to remove all the items from a previously used 

bin and to improve the value of the loss function.    

The halt condition for the proposed local search algorithm 

is either reaching of lower bound
C

w

N

n

i
i

 1
0  (obviously 

the optimal solution) or there are no in the neighborhood 

N* the solutions with a positive value of the criterion 

function. The second case means we have obtained the 

locally optimal solution. Another halt conditions as the 

restrictions of performance time or the iterations number 

were also considered and finally the iterations number 

restriction was included.  

After the obtaining the locally optimal solution we can 

generate a new initial solution by the algorithms 

RPEP/RPP/RBP and repeat the local search. Let the 

number of generations of initial solutions is l, then an 

algorithm allows to obtain l locally optimal packings 

(unless the global optimum is not reached). It is obviously 

that increasing the parameter l increases the probability of 

obtaining the global optimum. Let us describe the scheme 

of the algorithm with parameter l.  

 Algorithm LS 

1. To generate an initial solution by RPEP/RPP/RBP 

algorithm. 

2. To search y* such as *),(*)( Nyyfyf   

3. If the loss function z(y*)=N0 then to terminate 

algorithm 

4. If 0)( * yf then step 5, otherwise to set *yx   and 

step 2 

5. To repeat steps 1-4 l times ant to terminate with result 

x 

The local search algorithm can also be made probabilistic. 

For this purpose it is possible to consider not all solutions 

in the neighborhood, but just some random sampling of 

solutions from it.  Let’s add to the algorithm a new 

parameter lp that is the probability with which every 

solution in N* will be included to this sample. The value 

of this parameter should be defined experimentally. The 

introduction of non-determinism in the local search 

algorithm has a dual purpose: reducing the computing 

time and obtaining the better (with respect to the loss 

function) solutions than the solutions provided by the 

deterministic algorithm. The first purpose is fairly obvious 

– the number of scanning neighboring solutions at each 

iteration will decrease by 1/lp times and, accordingly, the 

time of solving the problem should decrease. The second 

purpose reaching can be explained by such arguments: 

probabilistic search has a less possibilities to be stuck in 

locally optimal points. So obtaining more perspective 

solutions with respect to the loss function is provided. It 

should be noted that the local search algorithm was later 

used as a part of more complex metaheuristic - tabu 

search method [6,7]. And there the changing of parameter 

p plays the role of the intensification procedure – p 

increases, when search performs with improvement of the 

criterion function, and decreases otherwise. 

 4. Computing experiment   

 Benchmarks 

We have used 8 benchmark sets from the OR-library 

proposed by Falkenauer[5], each set has 20 randomly 

generated problems united by a common characteristic of 

the source data. The Table 1 gives these characteristics for 

each set.  

Тable 1. Characteristics of benchmarks 

№ 

set 

n – number of 

items 

C –bin 

capacity  

Item weights 

 
1 120 150 [20,100] 

2 250 150 [20,100] 

3 500 150 [20,100] 

4 1000 150 [20,100] 

5 60 100.0 [20.0,50.0] 

6 120 100.0 [20.0,50.0] 

7 249 100.0 [20.0,50.0] 

8 501 100.0 [20.0,50.0] 

These benchmarks are quite difficult and the solutions 

obtained by the simple heuristic algorithms in most cases 

far from optimal. The best known solutions are given for 

all sets and were obtained by Falkenauer with a genetic 

algorithm. In almost all cases, these solutions are 

obviously optimal, because they coincide with a lower 

bound. Table 2 gives an average loss function values (for 

20 problems) – number of used bins.  The benchmarks of 

sets 5-8 are so-called triplets, an optimal solutions usually 

there is exactly three items packed into each bin. The 

triplets of the same set always have the same number of 

used bin in the obvious optimal solutions.  

Table 2. An average values of the best known number 

of used bins.  

№ set An average value of bin 

1 49.15 
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2 101.70 

3 201.20 

4 400.55 

5 20.00 

6 40.00 

7 83.00 

8 167.00 

 

Computing experiment with determined and 

probabilistic local search algorithms 

This computing experiment was hold with purpose of 

comparing the determined and probabilistic local search 

algorithms described above. 

The benchmark problems of set 1-8 were solved by the 

local search algorithm with parameter p equals to 1%, 5%, 

10%, 25%, 50% and 100%. With first four values of 

parameter the local search algorithm is probabilistic and 

scans in average 1/100 solutions in neighborhood, 1/20 

and so on. If  p=100% then the algorithm is an usual 

determined local search algorithm. This experiment has 

no purpose to define an optimal value of parameter l – the 

number of algorithm runs, in all cases l set equal to 10. 

Besides that the maximal iterations after each run was set 

equal to 1000. The algorithm has Borland Delphi 7.0 

code. Thorough all experiment Pentium Dual-Core, 2*2,7 

GHz was used.   

Table 3 contains the results of computing experiment. The 

average gap with respect to the best known solution was 

evaluated for 20 benchmarks from each set.  

Table 3. LS results with parameter p 

№ set  

An average gap wrt the best known solution 

            

p 

0,01 0,05 0,1 0,25 0,5 1,0 

1 0,6 0,4 0,15 0,15 0,03 0,05 

2 1,4 0,65 0,4 0,45 0,4 0,4 

3 2,7 2.75 2.65 2.65 2.55 2.55 

4 2.65 1.55 1.55 1.6 1.5 1.9 

5 1,95 1,0 1,0 0,85 0,45 0,25 

6 2,25 1,0 0,95 0,45 0,1 0,05 

7 1,35 0,5 0,5 0 0 0 

8 0,8 0,35 0,35 0 0 0 

As we have 10 runs of algorithms we take the best 

obtained solution as final solution. 

The next Table 4 gives an average solving time (in 

microseconds) for one benchmark problem from all sets. 

Table 4. An average solving time for LS algorithm 

№ set  

An average time (ms) 

            

p 

0,01 0,05 0,1 0,25 0,5 1,0 

1 0,31 1,08 0,89 0,61 0,88 0,81 

2 6,38 9,18 12,63 13,08 16,4

9 

15,3

2 

3 37,3 39,8 41,2 38,8 42,5 44,1 

4 945 1003 1040 967 1765 2304 

5 1,71 1,75 1,49 1,61 1,82 0,81 

6 15 19 17 11 12 9 

7 38,5 34,3 29,7 35,2 30,1 38,1 

8 49,1 51,0 48,0 43,2 47,9 55,6 

 

The results of computing experiment prove that the local 

search algorithm obtains solutions in many cases close to 

optimal in a reasonable time. The search performed 

thorough non-determined neighborhood required less time 

than the search using full neighborhood. The gap  wrt the 

optimum in many cases slightly worse or the same as the 

gap when p=1.0. The advantage of the determined 

algorithm in some cases can be explained by fact that 

searching in probabilistic neighborhood we have a 

significant deviations of loss or criterion function either 

best side or worse side. Besides that we have noted that 

when parameter p is small the loss function values have 

the big gap wrt the best-known solution value. This fact 

allows making a conclusion that the neighborhood should 

not be too narrow. So using a small value of parameter p 

is not effective. By other hand decreasing the number of 

solutions in neighborhood by quarter (p=0.25) or half 

(p=0.5) allows to obtain solutions close to optimum in a 

less computing time than determined algorithm. In general 

we can see that the best results were obtained for the 

bench mark set number 4. It is benchmarks with a big 

dimension, number of items n=1000 and with uniformly 

distributed weights of items. There is no a significant 

advantages of non-determined algorithm wrt determined 

for the triplets in sets 5-8. But we can observe a curiosity 

fact for triplets that the effectiveness of algorithm 

increases with dimension increasing. 

So the proposed local search algorithm can be 

recommended for solving the problems with great 

dimension and uniformly distributed weights of items.   

Besides that this algorithm has a quite small computing 

time and can be used as a part of more complicated 

metaheuristics. In particularly author realized the tabu 

search method using local search both in polynomial and 

exponential neighborhoods [6,7].     

5. Conclusion 

1. In this paper Bin Packing Problem was considered 

and some simple probabilistic heuristics for effective 

solving it were described. 

2. The local search algorithm using as initial solution 

obtained by simple heuristics was proposed. 

3. The definition of two neighborhoods with polynomial 

power wrt problem dimension was given. 

4. The convenient criterion function for solution 

choosing in neighborhood with constant computing 

time was offered.    
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5. The computing experiment results are given. The 

purpose of experiment was to estimate the 

effectiveness of the proposed algorithm and to 

investigate the algorithm behavior at various values 

of the parameter responsible for the degree of non-

determinism of the algorithm.  
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