Computer Science and Information Technologies, Computer Science and Information Technologies 2016

Font Size: 
Modelling of viscous fluid flow in the vertical main fracture with permeable walls
G. T. Bulgakova, A. M. Ilyasov

Last modified: 2020-12-20


Resulting from the long-term field development and high drawdowns, the extended induced fracture formation can take place in reservoir zones. To identify such high-permeability “super reservoirs”, the tracer injection studies are conducted, consisting in adding low concentrations of a special marker (tracer) into injected water. To estimate the super reservoir volume from the tracer arrival time, a one-dimensional non-stationary mathematical model was developed assuming the Newtonian fluid flowin the main fracture extended over the entire height of the productive reservoir and accounting for the fluid outflow (inflow) from the reservoir as well as the Meshcherskiy reaction force, accelerating ordecelerating fluid flow in the fracture. Based on the control volume approach, the SIMPLE algorithm was adjusted for the flows within permeable boundaries. The characteristic curves were drawn for describing the behavior of fluid flow rate, pressure and Reynolds number over the fracture length in regard to the porous medium permeability and fracture width.


fluid flow; Modelling; permeable walls; fracture formation


1. Sokolovsky, E.V., Soloviev, G.B., Trenchikov, Yu.I."Indicatorniye metody izucheniya neftegazonosnykhplastov". Moscow: Nedra, 1986. (in Russia)

2. Shook, G.M. "A Simple, Fast Method of EstimatingFractured Reservoir Geometry from Tracer Tests".Transactions Geothermal Resources Council 2003;26: 407-411.

3. Khozyainov, M.S., Sokolovsky, E.V., Chernokozhev,D.A. "Indicatorniye filtratsionniye issledovaniyaneftyanykh mestorozhdeniy", Saarbrücken, Germany:Palmarium Academic Publishing, 2014. (in Russia)

4. Tomin, P. Yu. "Primeneniye trasserov dlyavyavleniya osobennostei sredy v mezhskvazhinnomprostranstve”. Keldysh Preprint IPM, N. 86, Moscow,2010. URL: (inRussia)

5. Khozyainov, M.S., Chernokozhev, D.A."Computernoye modelirovaniye filtratsii mechenoizhidkosti s tselyu utochneniya geologicheskoy modeliexpluatiruemogo neftyanogo plasta". Karotazhnik,2004; 116-117: 293-294. (in Russia)

6. Chernokozhev, D.A. "Interpretatsia resultatovcomputernogo modelirovaniya filtratsii vody, nefti imechenoi zhidkosti dlya zonalno-neodnorolnogo isloisto-neodnorolnogo plasta-collectora".Geoinformatica. 2004; 1. (in Russia)

7. Gardien, C.J., Pope, G.A., Hill, A.D. “HydraulicFracture Diagnosis Using Chemical Tracers”. SPEPaper 36675, 1996.

8. De Zwart, Albert Hendrik; van Batenburg, DiederikW.; Stoll, Martin; Boerrigter, Paulus Maria; Harthy,Said. “Numerical Interpretation of Single WellChemical Tracer Tests for ASP injection”. SPE Paper141557, 2011.

9. Bu, Peter X., AlSofi, Abdulkareem M., Liu, Jim,Benedek, Lajos, Han, Ming. “Simulation of SingleWell Tracer Tests for Surfactant-Polymer Flooding”SPE Paper 172229, 2014.

10. Guan, L., Du, Y., Johnson, S.G., Choudhary, M.,“Advances of Interwell Tracer Modelling inPetroleum Industry”. 2004-163 PETSOCConference Paper, 2004.

11. Kocabas, I., l-Ain, “Modeling Tracer Flow in OilReservoirs Containing High Permeability Streaks”.SPE Paper 81429, 2003.

12. Loitsiansky, L.G. "Mekhanika zhidkosti i gaza".Moscow: Drofa, 2003. (in Russia)13. Sedov L.I. "Mekhanika sploshnykh sred". Part 1.Moscow: Nauka, 1970. (in Russia)

14. Primery raschetov po gidravlike. Edited by Alshtul,A.D. Moscow: Stroyizdat, 1977. (in Russia)

15. Meshcherskiy, I.V. "Raboty po mekhanike telperemennoy massy". 2nd ed. Moscow: GITTL,1952. (in Russia)

16. Patankar, S. "Numerical Heat Transfer and FluidFlow". New York: Hemisphere PublishingCorporation, 1980.

Full Text: PDF